Skip to main content

OH radical measurements in combustion environments using wavelength modulation spectroscopy and dual-frequency comb spectroscopy near 1491 nm

Abstract

Hydroxyl radical (OH) is a key intermediate reactive species during combustion processes relevant to power production, transportation, and manufacturing. We demonstrate an OH sensor based on in situ laser absorption spectroscopy for deployment in industrial conditions. The sensor relies on telecommunications-fiber-coupled, tunable-diode-laser absorption spectroscopy of an OH transition near 1491 nm. By employing wavelength modulation spectroscopy, the sensor is capable of in situ, quantitative detection of OH down to mole fraction values of 10−5 over a 75-cm pathlength. To increase the accuracy of the OH sensor, we perform the first dual-comb spectroscopy measurement above a flame and use the results to create an absorption database of water vapor transitions from 1489.2 to 1492.5 nm at temperatures up to 2165 K. The database is included in the analysis procedure for the tunable diode laser sensor to account for the water vapor absorption that overlaps with the OH absorption. The utility of the laser sensor is demonstrated by characterizing the concentration of OH radical above a catalytic combustor under different operating conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. S.J. Pachuta, M. Strobel, J. Adhes. Sci. Technol. 21, 795 (2007)

    Google Scholar 

  2. M. Strobel, M.C. Branch, M. Ulsh, R.S. Kapaun, S. Kirk, C.S. Lyons, J. Adhes. Sci. Technol. 10, 515 (1996)

    Google Scholar 

  3. Z. Guoli, Z. Aimin, W. Jiating, L. Zhongwei, X. Yong, Plasma Sci. Technol 12, 166 (2010)

    Google Scholar 

  4. N. Srivastava, C. Wang, T.S. Dibble, Eur. Phys. J. D 54, 77 (2009)

    ADS  Google Scholar 

  5. R. Grün, H.-J. Günther, Mater. Sci. Eng. A 140, 435 (1991)

    Google Scholar 

  6. P. Bruggeman, D.C. Schram, Plasma Sources Sci. Technol. 19, 045025 (2010)

    ADS  Google Scholar 

  7. J.W. Daily, Prog. Energy Combust. Sci. 23, 133 (1997)

    Google Scholar 

  8. M.J. Dyer, D.R. Crosley, Opt. Lett. 7, 382 (1982)

    ADS  Google Scholar 

  9. J.M. Seitzman, R.K. Hanson, P.A. DeBarber, C.F. Hess, Appl. Opt. 33, 4000 (1994)

    ADS  Google Scholar 

  10. B.B. Dally, A.N. Karpetis, R.S. Barlow, Proc. Combust. Inst. 29, 1147 (2002)

    Google Scholar 

  11. J.R. Gord, T.R. Meyer, S. Roy, Annu. Rev. Anal. Chem. 1, 663 (2008)

    Google Scholar 

  12. S. Kostka, S. Roy, P.J. Lakusta, T.R. Meyer, M.W. Renfro, J.R. Gord, R. Branam, Appl. Opt. 48, 6332 (2009)

    ADS  Google Scholar 

  13. A.M. Steinberg, I. Boxx, C.M. Arndt, J.H. Frank, W. Meier, Proc. Combust. Inst. 33, 1663 (2011)

    Google Scholar 

  14. R. P. Lucht, Laser Spectroscopy and Its Applications. (Taylor & Francis Group, 2017)

  15. T. Fuyuto, H. Kronemayer, B. Lewerich, J. Bruebach, T. Fujikawa, K. Akihama, T. Dreier, C. Schulz, Exp. Fluids 49, 783 (2010)

    Google Scholar 

  16. U. Azimov, N. Kawahara, E. Tomita, Fuel 98, 164 (2012)

    Google Scholar 

  17. X. Cui, C. Lengignon, W. Tao, W. Zhao, G. Wysocki, E. Fertein, C. Coeur, A. Cassez, L. Croize, W. Chen, Y. Wang, W. Zhang, X. Gao, W. Liu, Y. Zhang, F. Dong, J. Quant. Spectrosc. Radiat. Transf. 113, 1300 (2012)

    ADS  Google Scholar 

  18. G.J. Ray, T.N. Anderson, J.A. Caton, R.P. Lucht, T. Walther, Opt. Lett. 26, 1870 (2001)

    ADS  Google Scholar 

  19. S. Wang, R.K. Hanson, Appl. Phys. B 124, 37 (2018)

    ADS  Google Scholar 

  20. X. Mercier, E. Therssen, J.F. Pauwels, P. Desgroux, Chem. Phys. Lett. 299, 75 (1999)

    ADS  Google Scholar 

  21. R. Peeters, G. Berden, G. Meijer, Appl. Phys. B 73, 65 (2001)

    ADS  Google Scholar 

  22. L. Rutkowski, A.C. Johansson, D. Valiev, A. Khodabakhsh, A. Tkacz, F.M. Schmidt, A. Foltynowicz, Photonics Lett. Pol. 8, 110 (2016)

    Google Scholar 

  23. T. Aizawa, Appl. Opt. 40, 4894 (2001)

    ADS  Google Scholar 

  24. T. Aizawa, T. Kamimoto, T. Tamaru, Appl. Opt. 38, 1733 (1999)

    ADS  Google Scholar 

  25. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    ADS  Google Scholar 

  26. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    ADS  Google Scholar 

  27. P.J. Schroeder, D.J. Pfotenhauer, J. Yang, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 203, 194 (2017).

  28. L. Rutkowski, A. Foltynowicz, F.M. Schmidt, A.C. Johansson, A. Khodabakhsh, A.A. Kyuberis, N.F. Zobov, O.L. Polyansky, S.N. Yurchenko, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 205, 213 (2018)

    ADS  Google Scholar 

  29. P.J. Schroeder, M.J. Cich, J. Yang, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 210, 240 (2018)

    ADS  Google Scholar 

  30. D.C. Benner, C.P. Rinsland, V.M. Devi, M.A.H. Smith, D. Atkins, J. Quant. Spectrosc. Radiat. Transf. 53, 705 (1995)

    ADS  Google Scholar 

  31. B.J. Drouin, D.C. Benner, L.R. Brown, M.J. Cich, T.J. Crawford, V.M. Devi, A. Guillaume, J.T. Hodges, E.J. Mlawer, D.J. Robichaud, F. Oyafuso, V.H. Payne, K. Sung, E.H. Wishnow, S. Yu, J. Quant. Spectrosc. Radiat. Transf. 186, 118 (2017)

    ADS  Google Scholar 

  32. T. Fernholz, H. Teichert, V. Ebert, Appl. Phys. B 75, 229 (2002)

    ADS  Google Scholar 

  33. R. Engelbrecht, Spectrochim. Acta A Mol. Biomol. Spectrosc. 60, 3291 (2004)

    ADS  Google Scholar 

  34. K. Duffin, A.J. McGettrick, W. Johnstone, G. Stewart, D.G. Moodie, J. Light. Technol. 25, 3114 (2007)

    ADS  Google Scholar 

  35. T. Cai, T. Tan, G. Wang, W. Chen, X. Gao, Opt. Appl. 39, 13 (2009)

    Google Scholar 

  36. G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)

    ADS  Google Scholar 

  37. H. Yang, D. Greszik, T. Dreier, C. Schulz, Appl. Phys. B 99, 385 (2010)

    ADS  Google Scholar 

  38. G. Gao, B. Chen, B. Hu, Spectrosc. Lett. 47, 6 (2014)

    ADS  Google Scholar 

  39. C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, Meas. Sci. Technol. 25, 105104 (2014)

    ADS  Google Scholar 

  40. L.J. Lan, Y.J. Ding, Z.M. Peng, Y.J. Du, Y.F. Liu, Appl. Phys. B 117, 1211 (2014)

    ADS  Google Scholar 

  41. R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 115, 9 (2014)

    ADS  Google Scholar 

  42. Z. Qu, R. Ghorbani, D. Valiev, F.M. Schmidt, Opt. Express 23, 16492 (2015)

    ADS  Google Scholar 

  43. A. Behera, A. Wang, Appl. Opt. 55, 4446 (2016)

    ADS  Google Scholar 

  44. Z. Wang, S.T. Sanders, M.A. Robinson, Appl. Phys. B 122, 176 (2016)

    ADS  Google Scholar 

  45. T.R.S. Hayden, D.J. Petrykowski, A. Sanchez, S.P. Nigam, C. Lapointe, J.D. Christopher, N.T. Wimer, A. Upadhye, M. Strobel, P.E. Hamlington, G.B. Rieker, Proc. Combust. Inst. (2018). https://doi.org/10.1016/j.proci.2018.05.058

    Google Scholar 

  46. N. Polydorides, A. Tsekenis, E. Fisher, A. Chighine, H. McCann, L. Dimiccoli, P. Wright, M. Lengden, T. Benoy, D. Wilson, G. Humphries, W. Johnstone, Appl. Opt. 57, B1 (2018)

    Google Scholar 

  47. T.R.S. Hayden, N.T. Wimer, C. Lapointe, J.D. Christopher, S.P. Nigam, A. Upadhye, M. Strobel, P.E. Hamlington, G.B. Rieker, Combust. Sci. Technol. 1, 1 (2019)

  48. R.K. Hanson, P.K. Falcone, Appl. Opt. 17, 2477 (1978)

    ADS  Google Scholar 

  49. I. Coddington, N. Newbury, W. Swann, Optica 3, 414 (2016)

    ADS  Google Scholar 

  50. P.J. Schroeder, M.J. Cich, J. Yang, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, Phys. Rev. A 96, 022514 (2017)

    ADS  Google Scholar 

  51. J. Yang, P.J. Schroeder, M.J. Cich, F.R. Giorgetta, W.C. Swann, I. Coddington, N.R. Newbury, B.J. Drouin, G.B. Rieker, J. Quant. Spectrosc. Radiat. Transf. 217, 189 (2018)

    ADS  Google Scholar 

  52. P.J. Schroeder, R.J. Wright, S. Coburn, B. Sodergren, K.C. Cossel, S. Droste, G.W. Truong, E. Baumann, F.R. Giorgetta, I. Coddington, N.R. Newbury, G.B. Rieker, Proc. Combust. Inst. 36, 4565 (2017)

    Google Scholar 

  53. S. Coburn, C.B. Alden, R. Wright, K. Cossel, E. Baumann, G.-W. Truong, F. Giorgetta, C. Sweeney, N.R. Newbury, K. Prasad, I. Coddington, G.B. Rieker, Optica 5, 320 (2018)

    ADS  Google Scholar 

  54. G.-W. Truong, E.M. Waxman, K.C. Cossel, E. Baumann, A. Klose, F.R. Giorgetta, W.C. Swann, N.R. Newbury, I. Coddington, Opt. Express 24, 30495 (2016)

    ADS  Google Scholar 

  55. C.S. Alexander, M.C. Branch, M. Strobel, M. Ulsh, N. Sullivan, T. Vian, Prog. Energy Combust. Sci. 34, 696 (2008)

    Google Scholar 

  56. M.C. Branch, N. Sullivan, M. Ulsh, M. Strobel, Symp. Int. Combust. 27, 2807 (1998)

    Google Scholar 

  57. G.B. Rieker, F.R. Giorgetta, W.C. Swann, J. Kofler, A.M. Zolot, L.C. Sinclair, E. Baumann, C. Cromer, G. Petron, C. Sweeney, P.P. Tans, I. Coddington, N.R. Newbury, Optica 1, 290 (2014)

    ADS  Google Scholar 

  58. S.M. Gordon, Computer Program for Calculation of Complex Chemical Equilibrium Compositions, Rocket Performance, Incident and Reflected Shocks, and Chapman-Jouguet Detonations. Interim Revision, March 1976 (1976)

  59. E.M. Waxman, K.C. Cossel, G.-W. Truong, F.R. Giorgetta, W.C. Swann, S. Coburn, R.J. Wright, G.B. Rieker, I. Coddington, N.R. Newbury, Atmos. Meas. Tech. 10, 3295 (2017)

    Google Scholar 

  60. N. Sullivan, M.C. Branch, M. Strobel, J. Park, M. Ulsh, B. Leys, Combust. Sci. Technol. 158, 115 (2000)

    Google Scholar 

  61. S.A. Cottilard, Catalytic Combustion (Nova Science Publishers Inc, Hauppauge, 2011)

    Google Scholar 

  62. R.E. Hayes, S.T. Kolaczkowski, Introduction to Catalytic Combustion (CRC Press, Cambridge, 1998)

    Google Scholar 

Download references

Acknowledgements

Research sponsored by 3M Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Torrey R. S. Hayden.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1819 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hayden, T.R.S., Malarich, N., Petrykowski, D. et al. OH radical measurements in combustion environments using wavelength modulation spectroscopy and dual-frequency comb spectroscopy near 1491 nm. Appl. Phys. B 125, 226 (2019). https://doi.org/10.1007/s00340-019-7341-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7341-6