Skip to main content
Log in

Dynamic mode matching of internal and external cavities for enhancing the mode-hop-free synchronous tuning characteristics of an external-cavity diode laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

This paper proposed an external-cavity diode laser (ECDL) that has low-frequency tuning (< 10 Hz) ability using the synchronous tuning principle. However, during high-frequency tuning, the mechanical vibration of the external-cavity system inherent in the ECDL is excited, which will break the mode matching of the internal and external cavities and greatly decrease the mode-hop-free (MHF) tuning range of the ECDL. To obtain a wide MHF range at high-frequency tuning, we used an active internal-cavity mode control method with an inductance–resistance–capacitance (LRC) filter to implement the dynamic mode matching of the internal and external cavities. After using the LRC filter, the experimental results indicated that the MHF tuning range at high-frequency tuning was significantly improved and a maximum wavelength tuning rate of 6.21 THz/s was obtained at tuning frequency of 30 Hz using an uncoated laser diode with a central wavelength of 785 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Nasim, Y. Jamil, Laser Phys. Lett. 10, 043001 (2013)

    Article  ADS  Google Scholar 

  2. L. Tao, Z. Liu, W. Zhang, Y. Zhou, Opt. Lett. 39, 6997–7000 (2014)

    Article  ADS  Google Scholar 

  3. Y. Zhu, Z. Liu, W. Deng, Z. Deng, Rev. Sci. Instrum. 89, 053109 (2018)

    Article  ADS  Google Scholar 

  4. L. Hartmann, K. Meiners-Hagen, A. Abou-Zeid, Meas. Sci. Technol. 19, 045307 (2008)

    Article  ADS  Google Scholar 

  5. T. Sun, W. Zheng, Y. Yu, A.K. Asundi, S. Valyukh, Opt. Laser Eng. 115, 59–66 (2019)

    Article  Google Scholar 

  6. Y. Kim, K. Hibino, N. Sugita, M. Mitsuishi, Opt. Laser Eng. 86, 309–316 (2016)

    Article  Google Scholar 

  7. G. Galzerano, G. Mana, E. Massa, Meas. Sci. Technol. 18, 1338–1342 (2007)

    Article  ADS  Google Scholar 

  8. Y. Kim, K. Hibino, N. Sugita, M. Mitsuishi, Opt. Laser Eng. 51, 1173–1178 (2013)

    Article  Google Scholar 

  9. H. Yu, C. Aleksoff, J. Ni, Meas. Sci. Technol. 24, 075201 (2013)

    Article  ADS  Google Scholar 

  10. X. Jia, Z. Liu, L. Tao, Z. Deng, Opt. Express 25, 25782–25796 (2017)

    Article  ADS  Google Scholar 

  11. Z. Deng, Z. Liu, B. Li, Z. Liu, Opt. Rev. 22, 724–730 (2015)

    Article  Google Scholar 

  12. V.V. Vassiliev, S.A. Zibrov, V.L. Velichansky, Rev. Sci. Instrum. 77, 013102 (2006)

    Article  ADS  Google Scholar 

  13. G. Galbács, Appl. Spectrosc. Rev. 41, 259–303 (2006)

    Article  ADS  Google Scholar 

  14. D.K. Shin, B.M. Henson, R.I. Khakimov, J.A. Ross, C.J. Dedman, S.S. Hodgman, K.G. Baldwin, A.G. Truscott, Opt. Express 24, 27403–27414 (2016)

    Article  ADS  Google Scholar 

  15. M.S. Brittelle, J.M. Simms, S.T. Sanders, J.R. Gord, S. Roy, Meas. Sci. Technol. 27, 035501 (2016)

    Article  ADS  Google Scholar 

  16. K. Richard, P. Manson, P. Ewart, Meas. Sci. Technol. 19, 015603 (2008)

    Article  ADS  Google Scholar 

  17. I.E. Olivares, I.A. González, Appl. Phys. B Lasers O 122, 252 (2016)

    Article  ADS  Google Scholar 

  18. K.-H. Ko, Y. Kim, H. Park, Y.-H. Cha, T.-S. Kim, L. Lee, G. Lim, J. Han, K.-H. Ko, D.-Y. Jeong, Appl. Phys. B Lasers O 120, 233–238 (2015)

    Article  ADS  Google Scholar 

  19. A. Koglbauer, P. Würtz, T. Gericke, H. Ott, Appl. Phys. B Lasers O 104, 577–581 (2011)

    Article  ADS  Google Scholar 

  20. J. Czarske, J. Möbius, K. Moldenhauer, Appl. Opt. 44, 5180–5189 (2005)

    Article  ADS  Google Scholar 

  21. I. Bayrakli, Appl. Opt. 57, 4039–4042 (2018)

    Article  ADS  Google Scholar 

  22. S. Kazuhiko, K. Sho, Y. Nobuhiko, M. Kanehiro, K. Masao, Appl. Opt. 49, 5510–5516 (2010)

    Article  Google Scholar 

  23. T. Führer, D. Stang, T. Walther, Opt. Express 17, 4991–4996 (2009)

    Article  ADS  Google Scholar 

  24. T. Führer, T. Walther, Opt. Lett. 33, 372–374 (2008)

    Article  ADS  Google Scholar 

  25. S. Euler, T. Walther, T. Führer, J. Opt. Soc. Am. B 28, 508–514 (2011)

    Article  ADS  Google Scholar 

  26. K.S. Repasky, A.R. Nehrir, J.T. Hawthorne, G.W. Switzer, J.L. Carlsten, Appl. Opt. 45, 9013–9020 (2006)

    Article  ADS  Google Scholar 

  27. C. Petridis, I.D. Lindsay, D.J.M. Stothard, M. Ebrahimzadeh, Rev. Sci. Instrum. 72, 3811–3815 (2001)

    Article  ADS  Google Scholar 

  28. H. Gong, Z. Liu, Y. Zhou, W. Zhang, Appl. Opt. 53, 7878–7884 (2014)

    Article  ADS  Google Scholar 

  29. L. Nilse, H.J. Davies, C.S. Adams, Appl. Opt. 38, 548–553 (1999)

    Article  ADS  Google Scholar 

  30. L. Le, W. Wang, U.S. Patent Application No. 12/657,398 (2010)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from National Natural Science Foundation of China (Grant no. 51875447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Liu, Z., Zhang, X. et al. Dynamic mode matching of internal and external cavities for enhancing the mode-hop-free synchronous tuning characteristics of an external-cavity diode laser. Appl. Phys. B 125, 217 (2019). https://doi.org/10.1007/s00340-019-7335-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7335-4

Navigation