Ultrafast modification of oxide glass surface hardness


Application of femtosecond lasers is widely utilized in micromachining transparent materials. We have successfully altered the surface hardness of various commercial silicate glasses using a high-intensity femtosecond pulse laser. The femtosecond laser generates pulse energy of 500 nJ with a central wavelength of 800 nm. Using a peak power of 2.2 W and a repetition rate of 5.1 MHz, we observed an 18–20% increase surface hardness in glasses with low-modifier content and 16.6% decrease in glasses with high-modifier content. All laser exposed glasses show no detectable induced-crystallization or surface ablation. X-ray photoelectron spectroscopy results of our samples confirmed that the laser irradiation had no detectable effect on surface chemistry. X-ray reflectometry data showed the change in hardness was attributed to a thin layer with modified density. Experimental results suggest the strengthening mechanism derives from local structural transformation of interatomic bond distances and angles.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    D. Tan et al., Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications. Prog. Mater. Sci. 76, 154–228 (2016)

    Article  Google Scholar 

  2. 2.

    K.M. Davis et al., Writing waveguides in glass with a femtosecond laser. Opt. Lett. 21(21), 1729–1731 (1996)

    Article  ADS  Google Scholar 

  3. 3.

    R.R. Gattass, E. Mazur, Femtosecond laser micromachining in transparent materials. Nat. Photonics 2(4), 219–225 (2008)

    Article  ADS  Google Scholar 

  4. 4.

    S. Kanehira, K. Miura, K. Hirao, Ion exchange in glass using femtosecond laser irradiation. Appl. Phys. Lett. 93(2), 023112 (2008)

    Article  ADS  Google Scholar 

  5. 5.

    B. Poumellec et al., Modification thresholds in femtosecond laser processing of pure silica: review of dependencies on laser parameters [Invited]. Opt. Mater. Express 1(4), 766–782 (2011)

    Article  ADS  Google Scholar 

  6. 6.

    B. Poumellec et al., Femtosecond laser irradiation stress induced in pure silica. Opt. Express 11(9), 1070–1079 (2003)

    Article  ADS  Google Scholar 

  7. 7.

    C.B. Schaffer, Interaction of Femtosecond Laser Pulses with Transparent Materials (Diss. Harvard University, 2001)

  8. 8.

    A. Abou Khalil et al., Comparative study between the standard type I and the type A femtosecond laser induced refractive index change in silver containing glasses. Opt. Mater. Express 9(6), 2640–2651 (2019)

    Article  ADS  Google Scholar 

  9. 9.

    D.J. Little et al., Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime. J. Appl. Phys. 108(3), 033110 (2010)

    Article  ADS  Google Scholar 

  10. 10.

    C. D’Amico et al., Ultrafast laser-induced refractive index changes in Ge15As15S70 chalcogenide glass. Opt. Mater. Express 6(6), 1914–1928 (2016)

    MathSciNet  Article  ADS  Google Scholar 

  11. 11.

    S. Gross, M. Dubov, M.J. Withford, On the use of the type I and II scheme for classifying ultrafast laser direct-write photonics. Opt. Express 23(6), 7767–7770 (2015)

    Article  ADS  Google Scholar 

  12. 12.

    V.R. Bhardwaj et al., Femtosecond laser-induced refractive index modification in multicomponent glasses. J. Appl. Phys. 97(8), 083102 (2005)

    Article  ADS  Google Scholar 

  13. 13.

    D. Ehrt et al., Femtosecond-laser-writing in various glasses. J. Non-Cryst. Solids 345–346, 332–337 (2004)

    Article  ADS  Google Scholar 

  14. 14.

    S.M. Eaton et al., Heat accumulation effects in femtosecond laser-written waveguides with variable repetition rate. Opt. Express 13(12), 4708–4716 (2005)

    Article  ADS  Google Scholar 

  15. 15.

    T. Gorelik et al., Transmission electron microscopy studies of femtosecond laser induced modifications in quartz. Appl. Phys. A 76(3), 309–311 (2003)

    Article  ADS  Google Scholar 

  16. 16.

    J.W. Chan et al., Structural changes in fused silica after exposure to focused femtosecond laser pulses. Opt. Lett. 26(21), 1726–1728 (2001)

    Article  ADS  Google Scholar 

  17. 17.

    V.R. Bhardwaj et al., Stress in femtosecond-laser-written waveguides in fused silica. Opt. Lett. 29(12), 1312–1314 (2004)

    Article  ADS  Google Scholar 

  18. 18.

    F. Luo et al., Redistribution of elements in glass induced by a high-repetition-rate femtosecond laser. Opt. Express 18(6), 6262–6269 (2010)

    Article  ADS  Google Scholar 

  19. 19.

    M. Shimizu et al., Formation mechanism of element distribution in glass under femtosecond laser irradiation. Opt. Lett. 36(11), 2161–2163 (2011)

    Article  ADS  Google Scholar 

  20. 20.

    T. Seuthe et al., in Compositional Dependent Response of Silica-Based Glasses to Femtosecond Laser Pulse Irradiation, vol 8885 (2013), p. 88850M

  21. 21.

    E. Mazur, Structural changes induced in transparent materials with ultrashort laser pulses. Ultrafast Lasers: Technol. Appl. 80, 395 (2002)

    Google Scholar 

  22. 22.

    V.P. Veiko et al., Femtosecond laser-induced stress-free ultra-densification inside porous glass. Laser Phys. Lett. 13(5), 055901 (2016)

    Article  ADS  Google Scholar 

  23. 23.

    M. Douay et al., Densification involved in the UV-based photosensitivity of silica glasses and optical fibers: fiber gratings, photosensitivity, and poling. J. Lightwave Technol. 15(8), 1329–1342 (1997)

    Article  ADS  Google Scholar 

  24. 24.

    J. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes. Opt. Lett. 7(5), 196–198 (1982)

    Article  ADS  Google Scholar 

  25. 25.

    R.G.C. Beerkens, Modeling the kinetics of volatilization from glass melts. J. Am. Ceram. Soc. 84(9), 1952–1960 (2001)

    Article  Google Scholar 

  26. 26.

    H. Van Limpt, R. Beerkens, O. Verheijen, Models and experiments for sodium evaporation from sodium-containing silicate melts. J. Am. Ceram. Soc. 89(11), 3446–3455 (2006)

    Article  Google Scholar 

  27. 27.

    N.P. Mellott, S. Brantley, C. Pantano, Topography of polished plates of albite crystal and glass during dissolution. Water Rock Interact. Ore Deposits Environ. Geochem. Tribute David A. Crerar 7, 83–95 (2001)

    Google Scholar 

  28. 28.

    M.M. Smedskjaer, M. Jensen, Y. Yue, Effect of thermal history and chemical composition on hardness of silicate glasses. J. Non-Cryst. Solids 356(18), 893–897 (2010)

    Article  ADS  Google Scholar 

  29. 29.

    J. Petrovic, Durability of the refractive index change induced by a single femtosecond laser pulse in glass. Opt. Mater. X 1, 100004 (2019)

    Google Scholar 

  30. 30.

    A. Fuerbach, S. Gross, D. Little, A. Arriola, M. Ams, P. Dekker, M. Withford, Refractive index change mechanisms in different glasses induced by femtosecond laser irradiation. in Pacific Rim Laser Damage 2016: Optical Materials for High Power Lasers, vol. 9983 (Yokohama, Japan, 2016). https://doi.org/10.1117/12.2237368

  31. 31.

    K. Mishchik, Ultrafast Laser-Induced Modification of Optical Glasses: A Spectroscopy Insight into the Microscopic Mechanisms (Université Jean Monnet, Saint-Etienne, 2012)

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Sean Locker.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Locker, S., Sundaram, S.K. Ultrafast modification of oxide glass surface hardness. Appl. Phys. B 125, 225 (2019). https://doi.org/10.1007/s00340-019-7334-5

Download citation