Skip to main content
Log in

Intra-pulse H2O absorption diagnostic for temperature sensing in a rapid compression machine

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

An in-situ temperature diagnostic based on intra-pulse absorption spectroscopy has been developed using two pulsed quantum cascade lasers (QCLs) centered at 5.46 and 5.60 μm for rapid compression machine (RCM) experiments. Pulsed mode operation of the QCLs yielded a broad spectral tuning range (1.8–2.3 cm−1), through which spectral line-shapes of two H2O ro-vibrational transitions were resolved at high pressure conditions in the RCM (15–20 bar). Based on the resolved line-shapes, a calibration-free two-line thermometry method was used to determine the gas temperature. A high temporal resolution of 10 μs was achieved through a pulse repetition frequency of 100 kHz. The diagnostic was validated through measurements of temperature rise during the first-stage ignition of n-pentane/air mixtures. Thereafter, temperature rise during the first-stage ignition of iso-octane/air mixtures was quantified for the first time and compared with the calculated temperature rise using a chemical kinetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.J. Sung, H.J. Curran, Prog. Energy Combust. Sci. 44, 1 (2014)

    Article  Google Scholar 

  2. S.S. Goldsborough, S. Hochgreb, G. Vanhove, M.S. Wooldridge, H.J. Curran, C.-J. Sung, Prog. Energy Combust. Sci. 63, 1 (2017)

    Article  Google Scholar 

  3. R. Minetti, M. Carlier, M. Ribaucour, E. Therssen, L.R. Sochet, Combust. Flame 102, 298 (1995)

    Article  Google Scholar 

  4. K. Fieweger, R. Blumenthal, G. Adomeit, Combust. Flame 109, 599 (1997)

    Article  Google Scholar 

  5. J. Herzler, L. Jerig, P. Roth, Proc. Combust. Inst. 30, 1147 (2005)

    Article  Google Scholar 

  6. G. Vanhove, G. Petit, R. Minetti, Combust. Flame 145, 521 (2006)

    Article  Google Scholar 

  7. P. Zhang, W. Ji, T. He, X. He, Z. Wang, B. Yang, C.K. Law, Combust. Flame 167, 14 (2016)

    Article  Google Scholar 

  8. S.S. Goldsborough, G. Mittal, C. Banyon, Proc. Combust. Inst. 34, 685 (2013)

    Article  Google Scholar 

  9. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132 (2017)

    Article  Google Scholar 

  10. M. Uddi, A.K. Das, C.-J. Sung, Appl. Opt. 51, 5464 (2012)

    Article  ADS  Google Scholar 

  11. A.K. Das, M. Uddi, C.-J. Sung, Combust. Flame 159, 3493 (2012)

    Article  Google Scholar 

  12. T. Werblinski, F. Mittmann, M. Altenhoff, T. Seeger, L. Zigan, S. Will, Appl. Phys. B 118, 153 (2015)

    Article  ADS  Google Scholar 

  13. A.D. Draper, R.K. Cole, A.S. Makowiecki, J. Mohr, A. Zdanowicz, A. Marchese, N. Hoghooghi, G.B. Rieker, Opt. Express 27, 10814 (2019)

    Article  ADS  Google Scholar 

  14. C.S. Goldenstein, C.L. Strand, I.A. Schultz, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Opt. 53, 356 (2014)

    Article  ADS  Google Scholar 

  15. C.S. Goldenstein, C.A. Almodóvar, J.B. Jeffries, R.K. Hanson, C.M. Brophy, Meas. Sci. Technol. 25, 105104 (2014)

    Article  ADS  Google Scholar 

  16. G.C. Mathews, C.S. Goldenstein, Wavelength-Modulation Spectroscopy for MHz Thermometry and H2O Sensing in Combustion Gases of Energetic Materials. In: AIAA Scitech 2019 Forum, p. 1609 (2019)

  17. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Proc. Combust. Inst. 35, 3757 (2015)

    Article  Google Scholar 

  18. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Opt. Lett. 39, 6620 (2014)

    Article  ADS  Google Scholar 

  19. E.F. Nasir, A. Farooq, Proc. Combust. Inst. 36, 4453 (2017)

    Article  Google Scholar 

  20. E.F. Nasir, Mid-IR Laser Absorption Diagnostics for Shock Tube and Rapid Compression Machine Experiments (King Abdullah University of Science and Technology, Thuwal, 2018)

    Google Scholar 

  21. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, New York, 2016), pp. 107–129

    Book  Google Scholar 

  22. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    Article  ADS  Google Scholar 

  23. A. Farooq, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 19, 75604 (2008)

    Article  Google Scholar 

  24. J. Bugler, A. Rodriguez, O. Herbinet, F. Battin-Leclerc, C. Togbé, G. Dayma, P. Dagaut, H.J. Curran, Proc. Combust. Inst. 36, 441 (2017)

    Article  Google Scholar 

  25. H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, Combust. Flame 129, 253 (2002)

    Article  Google Scholar 

  26. N. Atef, G. Kukkadapu, S.Y. Mohamed, M.A. Rashidi, C. Banyon, M. Mehl, K.A. Heufer, E.F. Nasir, A. Alfazazi, A.K. Das, C.K. Westbrook, W.J. Pitz, T. Lu, A. Farooq, C.-J. Sung, H.J. Curran, S.M. Sarathy, Combust. Flame 178, 111 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The research reported in this work was funded by the Office of Sponsored Research (OSR) at King Abdullah University of Science and Technology (KAUST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamir Farooq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasir, E.F., Farooq, A. Intra-pulse H2O absorption diagnostic for temperature sensing in a rapid compression machine. Appl. Phys. B 125, 210 (2019). https://doi.org/10.1007/s00340-019-7327-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7327-4

Navigation