Skip to main content
Log in

Laser-induced emission of TiO2 nanoparticles in flame spray synthesis

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Oxide nanoparticles are widely studied because of their unique properties, including their crystalline phase, surface area, and porosity, which make them attractive for several applications. These properties are related to the increase in the surface/volume ratio when moving from the bulk to the nanoscale. For this reason, a diagnostic tool capable of monitoring the nanoparticle size and concentration during synthesis is particularly valuable. The laser-induced incandescence technique is widely used to provide such information. This study explored the applicability of this technique to TiO2 nanoparticles in flame spray synthesis. The fluorescence, flame emission, and incandescence signals were investigated. Time-resolved spectral measurements were first carried out on TiO2 nanoparticles deposited on a filter. At low laser fluences, the fluorescence signal of anatase TiO2 nanoparticles was detected. At higher fluences, the incandescence signal appeared. A fluence threshold limit that depended on the matrix effect was observed, above which breakdown phenomena occur. Then, laser-induced incandescence spectral measurements were performed on the flame spray at different heights above the burner and different acquisition delay times. The analysis showed the applicability and challenges in using this diagnostic tool in flame spray synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. L. Madler, H.K. Kammler, R. Mueller, S.E. Pratsinis, J. Aerosol. Sci. 33, 369–389 (2002)

    Article  ADS  Google Scholar 

  2. R. Strobel, A. Baiker, S.E. Pratsinis, Adv. Powder Technol. 17(5), 457–480 (2006)

    Article  Google Scholar 

  3. R. Koirala, S.E. Pratsinis, A. Baiker, Chem. Soc. Rev. 45, 3053–3068 (2016)

    Article  Google Scholar 

  4. A.J. Grohn, S.E. Pratsinis, A. Sanchez-Ferrer, R. Mezzenga, K. Wegner, Ind. Eng. Chem. Res. 53, 10734–10742 (2014)

    Article  Google Scholar 

  5. H.A. Michelsen, C. Schultz, G.J. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  6. C. Schultz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bourgie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333–354 (2006)

    Article  ADS  Google Scholar 

  7. S. De Iuliis, F. Cignoli, G. Zizak, Appl. Opt. 44(34), 7414–7423 (2005)

    Article  ADS  Google Scholar 

  8. D.R. Snelling, G.J. Smallwood, F. Liu, O.L. Gulder, W.D. Bachalo, Appl. Opt. 44(31), 6773–6785 (2005)

    Article  ADS  Google Scholar 

  9. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Proc. Combust. Inst. 31(1), 869–876 (2007)

    Article  Google Scholar 

  10. F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B 112(2), 433–440 (2013)

    Article  ADS  Google Scholar 

  11. F. Migliorini, S. De Iuliis, S. Maffi, G. Zizak, Appl. Phys. B 120, 417–427 (2015)

    Article  ADS  Google Scholar 

  12. S. De Iuliis, F. Migliorini, F. Cignoli, G. Zizak, Appl. Phys. B 83, 397–402 (2006)

    Article  ADS  Google Scholar 

  13. R.L. Vander Wall, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867–5879 (1999)

    Article  ADS  Google Scholar 

  14. T.A. Sipkens, Advances in the Modeling of Time-Resolved Laser-Induced Incandescence PhD Thesis, University of Waterloo, Ontario, Canada, 2018

  15. Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 108(40), 8994–9000 (2005)

    Article  Google Scholar 

  16. T.A. Sipkens, N.R. Singh, K.J. Daun, Appl. Phys. B 123(1), 14–30 (2017)

    Article  ADS  Google Scholar 

  17. A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41, 1–5 (2008)

    Article  Google Scholar 

  18. S.T. Moghaddam, K.J. Daun, Appl. Phys. B 124(8), 159–178 (2018)

    Article  ADS  Google Scholar 

  19. A.V. Fillipov, M.W. Markus, P. Roth, J. Aerosol. Sci. 30(1), 71–87 (1999)

    Article  ADS  Google Scholar 

  20. B.F. Kock, C. Cayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30, 1689–1697 (2005)

    Article  Google Scholar 

  21. G.S. Eom, C.W. Park, Y.H. Shin, K.H. Chung, S. Park, W. Choe, J.W. Hahn, Appl. Phys. Lett. 83(6), 1261–1263 (2003)

    Article  ADS  Google Scholar 

  22. J. Menser, K. Daun, T. Dreier, C. Schulz, Appl. Phys. B 122(11), 277 (2016)

    Article  ADS  Google Scholar 

  23. T.A. Sipkens, R. Mansmann, K.J. Daun, N. Petermann, J.T. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schutz, Appl. Phys. B 116, 623–636 (2014)

    Article  ADS  Google Scholar 

  24. R. Mueller, L. Madler, S.E. Pratsinis, Chem. Eng. Sci. 58, 1969–1976 (2003)

    Article  Google Scholar 

  25. D. Allen, H. Krier, N. Glumac, J. Heat Transf. 138(11), 112401 (2016)

    Article  Google Scholar 

  26. P. Roth, Proc. Combust. Inst. 31, 1773–1788 (2007)

    Article  Google Scholar 

  27. K.J. Daun, Int. J. Heat Mass Transf. 52(21), 5081–5089 (2009)

    Article  Google Scholar 

  28. K.J. Daun, J.T. Titantah, M. Karttunen, Appl. Phys. B 107(1), 221–228 (2012)

    Article  ADS  Google Scholar 

  29. K.J. Daun, T.A. Sipkens, J.T. Titantah, M. Karttunen, Appl. Phys. B 112, 409–420 (2013)

    Article  ADS  Google Scholar 

  30. S. Maffi, F. Cignoli, C. Bellomunno, S. De Iuliis, G. Zizak, Spectrochim. Acta Part B 63, 202–209 (2008)

    Article  ADS  Google Scholar 

  31. F. Cignoli, C. Bellomunno, S. Maffi, G. Zizak, Appl. Phys. B 96, 399–593 (2009)

    Article  Google Scholar 

  32. J. Shi, J. Chen, Z. Feng, T. Chen, Y. Lian, X. Wang, C. Li, J. Phys. Chem. C 111, 693–699 (2007)

    Article  Google Scholar 

  33. A. Strini, L. Schiavi, R. Zanoni, S. De Iuliis, R. Dondè, S. Maffi, F. Migliorini, J. Appl. Biomater Funct. Mater. 15(4), e408 (2017)

    Google Scholar 

  34. S. De Iuliis, M. Barbini, S. Benecchi, G. Zizak, Combust. Flame 115, 253–261 (1998)

    Article  Google Scholar 

  35. S. De Iuliis, S. Maffi, F. Cignoli, G. Zizak, Appl. Phys. B 102, 891–903 (2011)

    ADS  Google Scholar 

  36. A. Saha, A. Moya, A. Kahnt, D. Iglesias, S. Marchesan, R. Vannemacher, M. Prato, J.J. Vilatela, D.M. Guldi, Nanoscale 9, 7911–7921 (2017)

    Article  Google Scholar 

  37. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl. Opt. 56, 8436–8445 (2017)

    Article  ADS  Google Scholar 

  38. S. Gordon, B.J. McBride, NASA Reference Publication 1311 (1996)

Download references

Acknowledgements

The authors acknowledge the fruitful technical support provided by Mr. Gianni Brunello. This work was supported by the I-ZEB project (Towards Intelligent Zero Energy Buildings for a smart city growth), in the framework of the Accordo Quadro Regione Lombardia/CNR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. De Iuliis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Laser-Induced Incandescence”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Iuliis, S., Migliorini, F. & Dondè, R. Laser-induced emission of TiO2 nanoparticles in flame spray synthesis. Appl. Phys. B 125, 219 (2019). https://doi.org/10.1007/s00340-019-7324-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7324-7

Navigation