Skip to main content
Log in

Phase-locking mechanism in non-sequential double ionization

  • Rapid Communication
  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Here, we identify a new mechanism where the early stage of electron ionization in the field of strong femtosecond laser pulse determines the final yield of non-sequential double ionization. Using simple trajectory methods, we prove that the powerful short wavelength laser field causes an injection locking between its phase and the phases of the electron trajectories, which is next responsible for the enhanced or suppressed ionization for given intensities in the knee region. It is shown that both ionization and entanglement of the final electron state can be easily controlled by introducing frequency chirp of the laser field. Our methods allow one to quantify the quantum correlations due to the different mechanisms of strong field ionization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. D.N. Fittinghoff, P.R. Bolton, B. Chang, K.C. Kulander, Phys. Rev. Lett. 69, 2642 (1992)

    Article  ADS  Google Scholar 

  2. K. Kondo, A. Sagisaka, T. Tamida, Y. Nabekawa, S. Watanabe, Phys. Rev. A 48, R2531 (1993)

    Article  ADS  Google Scholar 

  3. P. Lambropoulos, P. Maragakis, J. Zhang, Phys. Rep. 305, 203 (1998)

    Article  ADS  Google Scholar 

  4. C. de Morisson Faria, X. Liu, J. Mod. Opt. 58, 1076 (2011)

    Article  ADS  Google Scholar 

  5. M. Lein, E.K.U. Gross, V. Engel, Phys. Rev. Lett. 85, 4707 (2000)

    Article  ADS  Google Scholar 

  6. J.B. Watson, A. Sanpera, D.G. Lappas, P.L. Knight, K. Burnett, Phys. Rev. Lett. 78, 1884 (1997)

    Article  ADS  Google Scholar 

  7. D.G. Lappas, R. van Leeuwen, J. Phys. B: At. Mol. Opt. Phys. 31, L249 (1998)

    Article  Google Scholar 

  8. W.-C. Liu, J.H. Eberly, S.L. Haan, R. Grobe, Phys. Rev. Lett. 83, 520 (1999)

    Article  ADS  Google Scholar 

  9. S.L. Haan, P.S. Wheeler, R. Panfili, J.H. Eberly, Phys. Rev. 66, 061402 (2002)

    Article  Google Scholar 

  10. I.P. Christov, Opt. Express 14, 6906 (2006)

    Article  ADS  Google Scholar 

  11. I.P. Christov, J. Zhou, J. Peatross, A. Rundquist, M. Murnane, H. Kapteyn, Phys. Rev. Lett. 77, 1743 (1996)

    Article  ADS  Google Scholar 

  12. S.H. Strogatz, Physica D 143, 1 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. I.P. Christov, R. Bartels, H. Kapteyn, M. Murnane, Phys. Rev. Lett. 86, 5458 (2001)

    Article  ADS  Google Scholar 

  14. J. von Neumann, Mathematical foundations of quantum mechanics (Princeton University Press, Princeton, 1955)

    MATH  Google Scholar 

  15. I.P. Christov, J. Opt. Soc. Am. B 34, 1817 (2017)

    Article  ADS  Google Scholar 

  16. F. Mauger, C. Chandre, T. Uzer, Phys. Rev. Lett. 104, 043005 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan P. Christov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Christov, I.P. Phase-locking mechanism in non-sequential double ionization. Appl. Phys. B 125, 209 (2019). https://doi.org/10.1007/s00340-019-7323-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7323-8

Navigation