Skip to main content
Log in

Design of high-performance double quantum well vertical cavity transistor lasers with GRIN base region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Different confinement structures are analyzed to achieve higher optoelectronic performances for double quantum well vertical cavity transistor laser with graded index separate confinement heterostructure. Adding the drift component to the diffusion term of the current density and solving new sets of equations, modified electro-optic performances of the device is obtained. Band-gap engineering of the original structure predicts simultaneous improvements in both current gain (more than two times) and −3 dB optical bandwidth (by 1.5 GHz). Other less critical, yet important, performance metrics including optical output power and threshold current (up to 20%) are enhanced due to applying graded layers of AlξGa1-ξAs in the base region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Walter, N. Holonyak Jr., M. Feng, R. Chan, Laser operation of a heterojunction bipolar light-emitting transistor. Appl. Phys. Lett. 85, 4768 (2004)

    Article  ADS  Google Scholar 

  2. M.-K. Wu, M. Feng, N. Holonyak, Surface emission vertical cavity transistor laser. IEEE Photonics Technol. Lett. 24, 1346 (2012)

    Article  ADS  Google Scholar 

  3. I. Taghavi, H. Kaatuzian, J.-P. Leburton, Performance optimization of multiple quantum well transistor laser. IEEE J. Quantum Electron. 49, 426 (2013)

    Article  ADS  Google Scholar 

  4. M. Hosseini, H. Kaatuzian, I. Taghavi, Graded index separate confinement heterostructure transistor laser: analysis of various confinement structures. Chin Opt. Lett. 15, 062501 (2017)

    Article  ADS  Google Scholar 

  5. R. Basu, B. Mukhopadhyay, and P. Basu, “Unified model for electrical and optical characteristics of a Transistor Laser with InGaAs quantum well and dot in GaAs base,” in General Assembly and Scientific Symposium, 2011 XXXth URSI, (2011), 1

  6. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode lasers and photonic integrated circuits (John Wiley & Sons, 2012), Vol. 218

  7. M. Feng, C.-H. Wu, M. Wu, C.-H. Wu, N. Holonyak Jr., Resonance-free optical response of a vertical cavity transistor laser. Appl. Phys. Lett. 111, 121106 (2017)

    Article  ADS  Google Scholar 

  8. M. Liu, M. Wu, M. Feng, N. Holonyak Jr., Lateral feeding design and selective oxidation process in vertical cavity transistor laser. J. Appl. Phys. 114, 163104 (2013)

    Article  ADS  Google Scholar 

  9. A. Kameyama, A. Massengale, C. Dai, and J. Harris, “Aluminum graded-base AlGaAs/GaAs pnp HBT with 37 GHz cut-off frequency,” in Electron Devices Meeting, 1994. IEDM’94. Technical Digest., International, (1994), 183

  10. B. Faraji, W. Shi, D.L. Pulfrey, L. Chrostowski, Analytical modeling of the transistor laser. IEEE J. Sel. Top. Quantum Electron. 15, 594 (2009)

    Article  ADS  Google Scholar 

  11. S. Adachi, GaAs, AlAs, and AlxGa1−xAs: material parameters for use in research and device applications. J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  12. L.V. Nguyen, A.J. Lowery, P.C. Gurney, D. Novak, A time-domain model for high-speed quantum-well lasers including carrier transport effects. IEEE J. Sel. Top. Quantum Electron. 1, 494 (1995)

    Article  ADS  Google Scholar 

  13. I. Taghavi, H. Kaatuzian, J.-P. Leburton, A nonlinear gain model for multiple quantum well transistor lasers. Semicond. Sci. Technol. 28, 025022 (2013)

    Article  ADS  Google Scholar 

  14. S. Hausser, G. Fuchs, A. Hangleiter, K. Streubel, W. Tsang, Auger recombination in bulk and quantum well InGaAs. Appl. Phys. Lett. 56, 913 (1990)

    Article  ADS  Google Scholar 

  15. W. Liu, D. Costa, J. Harris, Current gain of graded AlGaAs/GaAs heterojunction bipolar transistors with and without a base quasi-electric field. IEEE Trans. Electron Devices 39, 2422 (1992)

    Article  ADS  Google Scholar 

  16. M. Kalusmeier-Brown, M. Lundstrom, M. Melloch, The effects of heavy impurity doping on AlGaAs/GaAs bipolar transistors. IEEE Trans. Electron Devices 36, 2146 (1989)

    Article  ADS  Google Scholar 

  17. J.R. Lowney, H.S. Bennett, Majority and minority electron and hole mobilities in heavily doped GaAs. J. Appl. Phys. 69, 7102 (1991)

    Article  ADS  Google Scholar 

  18. R. Nagarajan, M. Ishikawa, T. Fukushima, R.S. Geels, J.E. Bowers, High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28, 1990 (1992)

    Article  ADS  Google Scholar 

  19. R. Nagarajan, T. Fukushima, S. W. Corzine, and J. E. Bowers, “Effects of carrier transport on high‐speed quantum well lasers,” 0003-6951 (1991)

  20. I. Taghavi, H. Kaatuzian, J.-P. Leburton, Bandwidth enhancement and optical performances of multiple quantum well transistor lasers. Appl. Phys. Lett. 100, 231114 (2012)

    Article  ADS  Google Scholar 

  21. R. Ahrenkiel, R. Ellingson, W. Metzger, D. Lubyshev, W. Liu, Auger recombination in heavily carbon-doped GaAs. Appl. Phys. Lett. 78, 1879 (2001)

    Article  ADS  Google Scholar 

  22. Y. A. Goldberg, “Aluminium gallium arsenide (AlxGa1−xAs),” in Handbook Series On Semiconductor Parameters: Volume 2: Ternary And Quaternary IIIV Compounds (World Scientific, 1999), pp. 1

  23. M.-K. Wu, M. Liu, R. Bambery, M. Feng, N. Holonyak, Low power operation of a vertical cavity transistor laser via the reduction of collector offset voltage. IEEE Photonics Technol. Lett. 26, 1003 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Kaatuzian.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namvar, B., Hosseini, M., Kaatuzian, H. et al. Design of high-performance double quantum well vertical cavity transistor lasers with GRIN base region. Appl. Phys. B 125, 207 (2019). https://doi.org/10.1007/s00340-019-7322-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7322-9

Navigation