Skip to main content
Log in

Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We design and numerically simulate a microstructure ring fiber, which supports 146 orbital angular momentum (OAM) modes at 1.1 μm and 70 OAM modes at 2.0 μm with flattened dispersion and low nonlinear coefficient. The fiber consists of an air hole at the center and a high refractive index ring between two well-ordered air hole rings in the cladding. It is found that the number of well-separated OAM modes decreases linearly with the increasing wavelength. Moreover, the waveguide dispersions of the modes are flat with wavelengths, which has a minimum variation of 2.92416 ps/nm/km over 900 nm bandwidth from 1.1 to 2.0 μm for HE13,1 mode. In addition, the nonlinear coefficient keeps lower than 1.8/W/km. The designed fiber may pave the way to applications in fiber-based OAM mode-division-multiplexing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Phys. Rev. A 45, 8185 (1992)

    Article  ADS  Google Scholar 

  2. M. Padgett, R. Bowman, Nat. Photonics 5, 343 (2011)

    Article  ADS  Google Scholar 

  3. A.E. Willner, Y. Ren, G. Xie, Y. Yan, L. Li, Z. Zhao, J. Wang, M. Tur, A.F. Molisch, S. Ashrafi, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 375, 20150439 (2017)

    Article  ADS  Google Scholar 

  4. J. Wang, Photonics Res. 4, B14 (2016)

    Article  Google Scholar 

  5. M. Erhard, R. Fickler, M. Krenn, A. Zeilinger, Light Sci. Appl. 7, 17146 (2018)

    Article  Google Scholar 

  6. M.J. Padgett, Opt. Express 25, 11265 (2017)

    Article  ADS  Google Scholar 

  7. S. Fürhapter, A. Jesacher, S. Bernet, M. Ritsch-Marte, Opt. Express 13, 689 (2005)

    Article  ADS  Google Scholar 

  8. A.E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M.P.J. Lavery, M. Tur, S. Ramachandran, A.F. Molisch, N. Ashrafi, S. Ashrafi, Adv. Opt. Photonics 7, 66 (2015)

    Article  ADS  Google Scholar 

  9. J. Wang, J.-Y. Yang, I.M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A.E. Willner, Nat. Photonics 6, 488 (2012)

    Article  ADS  Google Scholar 

  10. J. Du, J. Wang, Opt. Lett. 40, 4827 (2015)

    Article  ADS  Google Scholar 

  11. G. Gibson, J. Courtial, M.J. Padgett, M. Vasnetsov, V. Pas’ko, S.M. Barnett, S. Franke-Arnold, Opt. Express 12, 5448 (2004)

    Article  ADS  Google Scholar 

  12. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A.E. Willner, S. Ramachandran, Science 340, 1545 (2013)

    Article  ADS  Google Scholar 

  13. D.J. Richardson, J.M. Fini, L.E. Nelson, Nat. Photonics 7, 354 (2013)

    Article  ADS  Google Scholar 

  14. Y. Yue, N. Bozinovic, Y. Ren, H. Huang, M. Tur, P. Kristensen, S. Ramachandran, A.E. Willner, in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (Optical Society of America, 2013), p. OTh4G.2

  15. H. Huang, G. Xie, Y. Yan, N. Ahmed, Y. Ren, Y. Yue, D. Rogawski, M.J. Willner, B.I. Erkmen, K.M. Birnbaum, S.J. Dolinar, M.P.J. Lavery, M.J. Padgett, M. Tur, A.E. Willner, Opt. Lett. 39, 197 (2014)

    Article  ADS  Google Scholar 

  16. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Opt. Express 22, 26117 (2014)

    Article  ADS  Google Scholar 

  17. P. Gregg, P. Kristensen, S. E. Golowich, J. Ø. Olsen, P. Steinvurzel, S. Ramachandran, in CLEO 2013 (2013), pp. 1–2

  18. J. Ye, Y. Li, Y. Han, D. Deng, Z. Guo, J. Gao, Q. Sun, Y. Liu, S. Qu, Opt. Express 24, 8310 (2016)

    Article  ADS  Google Scholar 

  19. S. Li, J. Wang, Sci. Rep. 4, 3853 (2014)

    Article  ADS  Google Scholar 

  20. Y. Han, Y.-G. Liu, W. Huang, Z. Wang, J.-Q. Guo, M.-M. Luo, Opt. Express 24, 17272 (2016)

    Article  ADS  Google Scholar 

  21. Z. Zhang, J. Gan, X. Heng, Y. Wu, Q. Li, Q. Qian, D. Chen, Z. Yang, Opt. Express 23, 29331 (2015)

    Article  ADS  Google Scholar 

  22. J. Gan, X. Heng, Z. Zhang, Z. Yang, in 2018 Conf. Lasers Electro-Optics (2018), pp. 1–2

  23. B. Ung, P. Vaity, L. Wang, Y. Messaddeq, L.A. Rusch, S. LaRochelle, Opt. Express 22, 18044 (2014)

    Article  ADS  Google Scholar 

  24. S. Li, J. Wang, Opt. Express 23, 18736 (2015)

    Article  ADS  Google Scholar 

  25. Z.-A. Hu, Y.-Q. Huang, A.-P. Luo, H. Cui, Z.-C. Luo, W.-C. Xu, Opt. Express 24, 17285 (2016)

    Article  ADS  Google Scholar 

  26. H. Zhang, X. Zhang, H. Li, Y. Deng, L. Xi, X. Tang, W. Zhang, Crystals 7, 286 (2017)

    Article  Google Scholar 

  27. S. Ramachandran, P. Kristensen, M.F. Yan, Opt. Lett. 34, 2525 (2009)

    Article  ADS  Google Scholar 

  28. C. Brunet, B. Ung, L. Wang, Y. Messaddeq, S. LaRochelle, L.A. Rusch, Opt. Express 23, 10553 (2015)

    Article  ADS  Google Scholar 

  29. Y. Yue, Y. Yan, N. Ahmed, J. Yang, L. Zhang, Y. Ren, H. Huang, K.M. Birnbaum, B.I. Erkmen, S. Dolinar, M. Tur, A.E. Willner, IEEE Photonics J. 4, 535 (2012)

    Article  ADS  Google Scholar 

  30. J.C. Knight, T.A. Birks, P.S.J. Russell, D.M. Atkin, Opt. Lett. 21, 1547 (1996)

    Article  ADS  Google Scholar 

  31. J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Science 282, 1476 (1998)

    Article  Google Scholar 

  32. Y. Yue, L. Zhang, Y. Yan, N. Ahmed, J.-Y. Yang, H. Huang, Y. Ren, S. Dolinar, M. Tur, A.E. Willner, Opt. Lett. 37, 1889 (2012)

    Article  ADS  Google Scholar 

  33. H. Zhang, W. Zhang, L. Xi, X. Tang, X. Zhang, X. Zhang, IEEE Photonics Technol. Lett. 28, 1426 (2016)

    Article  ADS  Google Scholar 

  34. G. Zhou, G. Zhou, C. Chen, M. Xu, C. Xia, Z. Hou, IEEE Photonics J. 8, 1 (2016)

    Google Scholar 

  35. Y. Lei, X. Xu, N. Wang, H. Jia, J. Opt. 20, 105701 (2018)

    Article  ADS  Google Scholar 

  36. C. Brunet, B. Ung, P.-A. Bélanger, Y. Messaddeq, S. LaRochelle, L.A. Rusch, J. Lightwave Technol. 32, 4046 (2014)

    Article  ADS  Google Scholar 

  37. P.Z. Dashti, F. Alhassen, H.P. Lee, Phys. Rev. Lett. 96, 43604 (2006)

    Article  ADS  Google Scholar 

  38. B. Kuhlmey, G. Renversez, D. Maystre, Appl. Opt. 42, 634 (2003)

    Article  ADS  Google Scholar 

  39. G.P. Agrawal, Nonlinear Fiber Optics and Applications of Nonlinear Fiber Optics, 4th edn. (Elsevier, Amsterdam, 2007)

    Google Scholar 

  40. P.S. Maji, P.R. Chaudhuri, ISRN Opt. 2013, 1 (2013)

    Article  Google Scholar 

  41. V.V.R.K. Kumar, A.K. George, W.H. Reeves, J.C. Knight, P.S.J. Russell, F.G. Omenetto, A.J. Taylor, Opt. Express 10, 1520 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

National Natural Science Foundation of China (Grant nos. 61875058, 11874018, 61875242, 11474108); Science and Technology Program of Guangzhou (Grant no. 201607010245); Natural Science Foundation of Guangdong Province (no. 2018A030313347).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ping Luo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SH., Ma, QC., Chen, WC. et al. Microstructure ring fiber for supporting higher-order orbital angular momentum modes with flattened dispersion in broad waveband. Appl. Phys. B 125, 197 (2019). https://doi.org/10.1007/s00340-019-7307-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7307-8

Navigation