Skip to main content

Discrimination of chemicals via refractive index by EF-FLRD

Abstract

Design and application of an evanescent field fiber loop ring-down (EF-FLRD) spectroscopy system for discrimination of chemicals via their refractive indices are presented. To our knowledge, this is the first system that utilizes visible light. The system employs a broadband laser source at 800 nm at 80 MHz whose pulses were selectively picked by a Pockels cell to eliminate overlap of the pulses in the cavity. Chemically etched fiber region was used as a sensing element and eight organic solvents were discriminated compared to the reference sample mainly due to their differences in refractive indices. The solvent dielectric constants cover a broad range from 2 (of decane) to 80 (of water) at 20 °C (dielectric constants are obtained from Solvent Polarities, http://murov.info/orgsolvents.htm#TABLE2, 2019). Prior to the measurements, optimization of data collection protocols, etched sensing region geometry, and the sample compartment configuration was achieved. The results show that solutions with a refractive index unit difference of 0.0018 (acetone–ethanol couple) were able to be differentiated as the lowest difference and the detectable lowest loss was calculated to be 1.10 × 10−5 dB. A single measurement takes less than 1 min (which is limited by the control system) with the lowest error of 0.37% (for acetone) and the highest error of 1.71% (for ethanol) showing real-time measurement possibility. Simplicity and unique design of the set-up is a promising first step in construction/utilization of EF-FLRD systems for trace chemical detection in the visible range.

Graphic abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    M.D. Wheeler, S.M. Newman, A.J. Orr-Ewing, M.N.R. Ashfold, J. Chem. Soc. Faraday Trans. 94(3), 337–351 (1998)

    Article  Google Scholar 

  2. 2.

    C. Wang, S.T. Scherrer, Opt. Lett. 29(4), 352–354 (2004)

    ADS  Article  Google Scholar 

  3. 3.

    R. Li, C. Tian, Y. Zhang, J. Zhang, X. Chen, S. Liu, J. Light. Technol. 33(17), 3607–3612 (2015)

    ADS  Article  Google Scholar 

  4. 4.

    C. Wang, M. Kaya, C. Wang, J. Biomed. Opt. 17(3), 037004 (2012)

    ADS  Article  Google Scholar 

  5. 5.

    X. Zhou, X. Wang, K. Chen, X. Mao, W. Peng, Q. Yu, Opt. Commun. 333, 105–108 (2014)

    ADS  Article  Google Scholar 

  6. 6.

    E. Austin, A. van Brakel, M.N. Petrovich, D.J. Richardson, Sens. Actuators B Chem. 139(1), 30–34 (2009)

    Article  Google Scholar 

  7. 7.

    Y. Zhao, L. Bai, Q. Wang, Opt. Commun. 309, 328–332 (2013)

    ADS  Article  Google Scholar 

  8. 8.

    A. Yolalmaz, F. Hanifehpour Sadroud, M.F. Danışman, O. Esenturk, Opt. Commun. 396 (2017)

  9. 9.

    M. Jiang, W. Zhang, Q. Zhang, Y. Liu, B. Liu, Opt. Commun. 283(2), 249–253 (2010)

    ADS  Article  Google Scholar 

  10. 10.

    T.K. Gangopadhyay, A. Giorgini, A. Halder, M. Pal, M.C. Paul, S. Avino, G. Gagliardi, Sens. Actuators B Chem. 206, 327–335 (2015)

    Article  Google Scholar 

  11. 11.

    R.S. Brown, I. Kozin, Z. Tong, R.D. Oleschuk, H.-P. Loock, J. Chem. Phys. 117(23), 10444–10447 (2002)

    ADS  Article  Google Scholar 

  12. 12.

    J.V. Ittiarah, S. Sidhik, T.K. Gangopadhyay, Sens. Actuators A Phys. 223, 61–66 (2015)

    Article  Google Scholar 

  13. 13.

    P. Sahay, M. Kaya, C. Wang, Sensors 13(1), 39–57 (2012)

    Article  Google Scholar 

  14. 14.

    A.W. Snyder, J.D. Love, Optical Waveguide Theory (Springer, Boston, 1984)

    Book  Google Scholar 

  15. 15.

    N.J. Harrick, K.H. Beckmann, Characterization of Solid Surfaces (Springer, Boston, 1974), pp. 215–245

    Book  Google Scholar 

  16. 16.

    C. Wang, C. Herath, Meas. Sci. Technol. 21, 085205 (2010)

    ADS  Article  Google Scholar 

  17. 17.

    W. Di, Z. Yong, W. Qi, IEEE Photon. Technol. Lett. 27(17), 1802–1805 (2015)

    ADS  Article  Google Scholar 

  18. 18.

    S.-M. Tseng, C.-L. Chen, Appl. Opt. 31(18), 3438 (1992)

    ADS  Article  Google Scholar 

  19. 19.

    H. Alali, C. Wang, Appl. Opt. 55(31), 8938 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    C. Herath, C. Wang, M. Kaya, D. Chevalier, J. Biomed. Opt. 16(5), 050501 (2011)

    ADS  Article  Google Scholar 

  21. 21.

    T. Shen, Y. Feng, B. Sun, X. Wei, Appl. Opt. 55(4), 673 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    F. Ye, C. Zhou, B. Qi, L. Qian, B Sens. Actuators Chem. 184, 150–155 (2013)

    Article  Google Scholar 

  23. 23.

    R.-Q. Lv, Y. Zhao, M.-C. Liu, Instrum Sci. Technol. 44(5), 547–557 (2016)

    Article  Google Scholar 

  24. 24.

    K. Sharma, M.I.M. Abdul Khudus, S.U. Alam, S. Bhattacharya, D. Venkitesh, G. Brambilla, Opt. Commun. 407, 186–192 (2018)

    ADS  Article  Google Scholar 

  25. 25.

    N. Ni, C.C. Chan, L. Xia, P. Shum, IEEE Photon. Technol. Lett. 20(16), 1351–1353 (2008)

    ADS  Article  Google Scholar 

  26. 26.

    W. Yan, Q. Han, Y. Chen, H. Song, X. Tang, T. Liu, Sens. Actuators B Chem. 255, 2018–2022 (2018)

    Article  Google Scholar 

  27. 27.

    S. Silva, O. Frazão, Opt. Laser Technol. 91, 112–115 (2017)

    ADS  Article  Google Scholar 

  28. 28.

    A. Yolalmaz, Utilization of Fiber Loop Ring Down Technique for Sensing Applications (Middle East Technical University, Ankara, 2017)

    Google Scholar 

  29. 29.

    M.N. Polyanskiy, Refractive Index Database. http://refractiveindex.info. Last Accessed 06 May 2019

  30. 30.

    J.M. Porter, J.B. Jeffries, R.K. Hanson, J. Quant. Spectrosc. Radiat. Transf. 110(18), 2135–2147 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    M. Kaya, C. Wang, in AIP Conference Proceedings (2017), p 020027

  32. 32.

    G. Liu, Y. Wu, K. Li, P. Hao, P. Zhang, M. Xuan, IEEE Photon. Technol. Lett. 24(8), 658–660 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    Solvent Polarities. http://murov.info/orgsolvents.htm#TABLE2. Accessed 18 June 2019 (2019)

Download references

Acknowledgements

This study is financially supported by The Scientific and Technological Research Council of Turkey Grant No. 212T079 and funded in part by METU Scientific Research Project Coordinator.

Author information

Affiliations

Authors

Contributions

The manuscript was written through the contributions of all authors. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Okan Esenturk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1104 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yolalmaz, A., Danışman, M.F. & Esenturk, O. Discrimination of chemicals via refractive index by EF-FLRD. Appl. Phys. B 125, 156 (2019). https://doi.org/10.1007/s00340-019-7261-5

Download citation