Applied Physics B

, 125:122 | Cite as

Minimizing rf-induced excess micromotion of a trapped ion with the help of ultracold atoms

  • Amir Mohammadi
  • Joschka Wolf
  • Artjom Krükow
  • Markus Deiß
  • Johannes Hecker DenschlagEmail author


We report on the compensation of excess micromotion due to parasitic rf-electric fields in a Paul trap. The parasitic rf-electric fields stem from the Paul trap drive but cause excess micromotion, e.g., due to imperfections in the setup of the Paul trap. We compensate these fields by applying rf-voltages of the same frequency, but adequate phases and amplitudes to Paul trap electrodes. The magnitude of micromotion is probed by studying elastic collision rates of the trapped ion with a gas of ultracold neutral atoms. Furthermore, we demonstrate that also reactive collisions can be used to quantify micromotion. We achieve compensation efficiencies of about 1 \(\,\text {Vm}^{-1}\), which is comparable to other conventional methods.



This work was supported by the German Research Foundation (DFG, Deutsche Forschungsgemeinschaft) within SFB/TRR21 and grant DE 510/2-1.


  1. 1.
    H. Häffner, C.F. Roos, R. Blatt, Phys. Rep. 469, 155 (2008). ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Bermudez, P. Schindler, T. Monz, R. Blatt, M. Müller, New J. Phys. 19, 113038 (2017). ADSCrossRefGoogle Scholar
  3. 3.
    M. Johanning, A.F. Varón, C. Wunderlich, J. Phys. B: At. Mol. Opt. Phys. 42, 154009 (2009). ADSCrossRefGoogle Scholar
  4. 4.
    D.J. Wineland, W.M. Itano, J.C. Bergquist, R.G. Hulet, Phys. Rev. A 36, 2220 (1987). ADSCrossRefGoogle Scholar
  5. 5.
    A.L. Wolf, S.A. van den Berg, C. Gohle, E.J. Salumbides, W. Ubachs, K.S.E. Eikema, Phys. Rev. A 78, 032511 (2008). ADSCrossRefGoogle Scholar
  6. 6.
    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637 (2015). ADSCrossRefGoogle Scholar
  7. 7.
    M. Tomza, K. Jachymski, R. Gerritsma, A. Negretti, T. Calarco, Z. Idziaszek and P. S.Julienne, arXiv:1708.07832 (2017)
  8. 8.
    A. Härter, J. Hecker Denschlag, Contemp. Phys. 55, 33 (2014). CrossRefGoogle Scholar
  9. 9.
    D. Zhang and S. Willitsch, Chap. 10 in: Cold chemistry: molecular scattering and reactivity near absolute zero (edited by O. Dulieu and A. Osterwalder), RSC Publishing (2017). Google Scholar
  10. 10.
    D.J. Berkeland, J.D. Miller, J.C. Bergquist, W.M. Itano, D.J. Wineland, J. Appl. Phys. 83, 5025 (1998). ADSCrossRefGoogle Scholar
  11. 11.
    D.T.C. Allcock, J.A. Sherman, D.N. Stacey, A.H. Burrell, M.J. Curtis, G. Imreh, N.M. Linke, D.J. Szwer, S.C. Webster, A.M. Steane, D.M. Lucas, New J. Phys. 12, 053026 (2010). ADSCrossRefGoogle Scholar
  12. 12.
    B.L. Chuah, N.C. Lewty, R. Cazan, M.D. Barret, Opt. Express 21, 10632 (2013). ADSCrossRefGoogle Scholar
  13. 13.
    T.F. Gloger, P. Kaufmann, D. Kaufmann, M.T. Baig, T. Collath, M. Johanning, C. Wunderlich, Phys. Rev. A 92, 043421 (2015). ADSCrossRefGoogle Scholar
  14. 14.
    U. Tanaka, K. Masuda, Y. Akimoto, K. Koda, Y. Ibaraki, S. Urabe, Appl. Phys. B 107, 907 (2012). ADSCrossRefGoogle Scholar
  15. 15.
    S. Narayanan, N. Daniilidis, S.A. Möller, R. Clark, F. Ziesel, K. Singer, F. Schmidt-Kaler, H. Häffner, J. Appl. Phys. 110, 114909 (2011). ADSCrossRefGoogle Scholar
  16. 16.
    J. Keller, H.L. Partner, T. Burgermeister, T.E. Mehlstäubler, J. Appl. Phys. 118, 104501 (2015). ADSCrossRefGoogle Scholar
  17. 17.
    Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, M. Pinkas, Y. Dallal, R. Ozeri, J. Mod. Opt. 65, 501 (2017). ADSCrossRefGoogle Scholar
  18. 18.
    T. Huber, A. Lambrecht, J. Schmidt, L. Karpa, T. Schaetz, Nat. Commun. 5, 5587 (2014). ADSCrossRefGoogle Scholar
  19. 19.
    A. Härter, A. Krükow, A. Brunner, J. Hecker Denschlag, Appl. Phys. Lett. 102, 221115 (2013). ADSCrossRefGoogle Scholar
  20. 20.
    Z. Meir, T. Sikorsky, R. Ben-shlomi, N. Akerman, Y. Dallal, R. Ozeri, Phys. Rev. Lett. 117, 243401 (2016). ADSCrossRefGoogle Scholar
  21. 21.
    S. Schmid, A. Härter, A. Frisch, S. Hoinka, J. Hecker Denschlag, Rev. Sci. Instrum. 83, 053108 (2012). ADSCrossRefGoogle Scholar
  22. 22.
    A. Härter, Two-body and three-body dynamics in atom-ion experiments. Ph.D. thesis, Universität Ulm (2013)Google Scholar
  23. 23.
    A. Brunner, Excess Micromotion in Atom-Ionen Experimenten. Diploma thesis, Universität Ulm (2012)Google Scholar
  24. 24.
    P.F. Herskind, A. Dantan, M. Albert, J.P. Marler, M. Drewsen, J. Phys. B: At. Mol. Opt. Phys. 42, 154008 (2009). ADSCrossRefGoogle Scholar
  25. 25.
    M. Cetina, A.T. Grier, V. Vuletić, Phys. Rev. Lett. 109, 253201 (2012). ADSCrossRefGoogle Scholar
  26. 26.
    H.A. Fürst, N.V. Ewald, T. Secker, J. Joger, T. Feldker, R. Gerritsma, J. Phys. B: At. Mol. Opt. Phys. 51, 195001 (2018). ADSCrossRefGoogle Scholar
  27. 27.
    L.H. Nguyên, A. Kalev, M.D. Barrett, B.-G. Englert, Phys. Rev. A 85, 052718 (2012). ADSCrossRefGoogle Scholar
  28. 28.
    B. Höltkemeier, P. Weckesser, H. López-Carrera, M. Weidemüller, Phys. Rev. Lett. 116, 233003 (2016). ADSCrossRefGoogle Scholar
  29. 29.
    C. Zipkes, L. Ratschbacher, C. Sias, M. Köhl, New J. Phys. 13, 053020 (2011). ADSCrossRefGoogle Scholar
  30. 30.
    S. Haze, M. Sasakawa, R. Saito, R. Nakai, T. Mukaiyama, Phys. Rev. Lett. 120, 043401 (2018). ADSCrossRefGoogle Scholar
  31. 31.
    K. Ravi, S. Lee, A. Sharma, G. Werth, S.A. Rangwala, Nat. Commun. 3, 1126 (2012). ADSCrossRefGoogle Scholar
  32. 32.
    S. Dutta, R. Sawant, S.A. Rangwala, Phys. Rev. Lett. 118, 113401 (2017). ADSCrossRefGoogle Scholar
  33. 33.
    I. Rouse, S. Willitsch, Phys. Rev. A 97, 042712 (2018)ADSCrossRefGoogle Scholar
  34. 34.
    A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, J. Pérez-Ríos, C.H. Greene, Phys. Rev. Lett. 116, 193201 (2016). ADSCrossRefGoogle Scholar
  35. 35.
    A. Krükow, A. Mohammadi, A. Härter, J. Hecker Denschlag, Phys. Rev. A 94, 030701(R) (2016). ADSCrossRefGoogle Scholar
  36. 36.
    R. Côté, A. Dalgarno, Phys. Rev. A 62, 012709 (2000). ADSCrossRefGoogle Scholar
  37. 37.
    M.D. Gregoire, I. Hromada, W.F. Holmgren, R. Trubko, A.D. Cronin, Phys. Rev. A 92, 052513 (2015). ADSCrossRefGoogle Scholar
  38. 38.
    H. da Silva Jr, M. Raoult, M. Aymar, O. Dulieu, New J. Phys. 17, 045015 (2015). CrossRefGoogle Scholar
  39. 39.
    T. Secker, N. Ewald, J. Joger, H. Fürst, T. Feldker, R. Gerritsma, Phys. Rev. Lett. 118, 263201 (2017). ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institut für Quantenmaterie and Center for Integrated Quantum Science and Technology (IQST)Universität UlmUlmGermany

Personalised recommendations