Skip to main content
Log in

Can soot primary particle size distributions be determined using laser-induced incandescence?

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Soot from combustion processes often takes the form of fractal-like aggregates, assembled of primary particles, both of which obey polydisperse size distributions. In this work, the possibility of determining the primary particle size distribution through time-resolved laser-induced incandescence (TiRe-LII) under the influence of thermal shielding of polydispersely distributed aggregates is critically investigated for two typical measurement situations: in-flame measurements at high temperature and a soot-laden aerosol at room temperature. The uncertainty attached to the quantities is evaluated through Bayesian inference. We show how different kinds of prior knowledge concerning the aggregation state of the aerosol affect the uncertainties of the recovered size distribution parameters of the primary particles. To obtain reliable estimates for the primary particle size distribution parameters, specific information about the aggregate size distribution is required. This is especially the case for cold bath gases, where thermal shielding has a large effect. Furthermore, it is crucial to use the full duration of the usable LII signal trace to recover the width of the size distribution with small uncertainties. The uncertainty attached to TiRe-LII inferred primary particle size parameters becomes considerably larger when additional model parameters are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.R. Forrest, T.A. Witten Jr., J. Phys. A 12, L109 (1979)

    ADS  Google Scholar 

  2. A. Brasil, T.L. Farias, M. Carvalho, J. Aerosol Sci. 30, 1379–1389 (1999)

    ADS  Google Scholar 

  3. C. Liu, Y. Yin, F. Hu, H. Jin, C.M. Sorensen, Aerosol Sci. Technol. 49, 928–940 (2015)

    ADS  Google Scholar 

  4. H. Michelsen, C. Schulz, G. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Google Scholar 

  5. K. Tian, F. Liu, K.A. Thomson, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 138, 195–198 (2004)

    Google Scholar 

  6. K. Tian, K.A. Thomson, F. Liu, D.R. Snelling, G.J. Smallwood, D. Wang, Combust. Flame 144, 782–791 (2006)

    Google Scholar 

  7. L. Kiss, J. Söderlund, G. Niklasson, C. Granqvist, Nanotechnology 10, 25 (1999)

    ADS  Google Scholar 

  8. A. Bescond, J. Yon, F. Ouf, D. Ferry, D. Delhaye, D. Gaffié, A. Coppalle, C. Rozé, Aerosol Sci. Technol. 48, 831–841 (2014)

    ADS  Google Scholar 

  9. A.M. Vargas, Ö.L. Gülder, Rev. Sci. Instrum. 87, 055101 (2016)

    ADS  Google Scholar 

  10. Ü.Ö. Köylü, G.M. Faeth, T.L. Farias, M.G. Carvalho, Combust. Flame 100, 621–633 (1995)

    Google Scholar 

  11. C. Sorensen, Aerosol Sci. Technol. 35, 648–687 (2001)

    ADS  Google Scholar 

  12. B. Ma, M.B. Long, Appl. Phys. B 117, 287–303 (2014)

    ADS  Google Scholar 

  13. D. Burr, K. Daun, O. Link, K. Thomson, G. Smallwood, J. Quant. Spectrosc. Radiat. Transf. 112, 1099–1107 (2011)

    ADS  Google Scholar 

  14. Z. Juranyi, M. Loepfe, M. Nenkov, H. Burtscher, J. Aerosol Sci. 103, 83–92 (2017)

    ADS  Google Scholar 

  15. K. Tsutsui, K. Koya, T. Kato, Rev. Sci. Instrum. 69, 3482–3486 (1998)

    ADS  Google Scholar 

  16. H. Oltmann, J. Reimann, S. Will, Combust. Flame 157, 516–522 (2010)

    Google Scholar 

  17. F.J.T. Huber, M. Altenhoff, S. Will, Rev. Sci. Instrum. 87, 053102 (2016)

    ADS  Google Scholar 

  18. J. Delhay, P. Desgroux, E. Therssen, H. Bladh, P.-E. Bengtsson, H. Hönen, J.D. Black, I. Vallet, Appl. Phys. B 95, 825–838 (2009)

    ADS  Google Scholar 

  19. C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83, 333–354 (2006)

    ADS  Google Scholar 

  20. B. Axelsson, R. Collin, P.-E. Bengtsson, Appl. Opt. 39, 3683–3690 (2000)

    ADS  Google Scholar 

  21. H.A. Michelsen, F. Liu, B.F. Kock, H. Bladh, A. Boïarciuc, M. Charwath, T. Dreier, R. Hadef, M. Hofmann, J. Reimann, Appl. Phys. B 87, 503–521 (2007)

    ADS  Google Scholar 

  22. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20, 2342–2344 (1995)

    ADS  Google Scholar 

  23. F. Liu, B.J. Stagg, D.R. Snelling, G.J. Smallwood, Int. J. Heat Mass Transf. 49, 777–788 (2006)

    Google Scholar 

  24. R.L.Vander Wal, T.M. Ticich, A.B. Stephens, Combust. Flame 116, 291–296 (1999)

    Google Scholar 

  25. P. Roth, A. Filippov, J. Aerosol Sci. 27, 95–104 (1996)

    ADS  Google Scholar 

  26. G.R. Markowski, Aerosol Sci. Technol. 7, 127–141 (1987)

    ADS  Google Scholar 

  27. T. Lehre, H. Bockhorn, B. Jungfleisch, R. Suntz, Chemosphere 51, 1055–1061 (2003)

    ADS  Google Scholar 

  28. T. Lehre, B. Jungfleisch, R. Suntz, H. Bockhorn, Appl. Opt. 42, 2021–2030 (2003)

    ADS  Google Scholar 

  29. S. Dankers, A. Leipertz, Appl. Opt. 43, 3726–3731 (2004)

    ADS  Google Scholar 

  30. S. Kuhlmann, J. Schumacher, J. Reimann, S. Will, in Proceedings of PARTEC, pp. 16–18 (2004)

  31. K. Daun, B. Stagg, F. Liu, G. Smallwood, D. Snelling, Appl. Phys. B 87, 363–372 (2007)

    ADS  Google Scholar 

  32. S.-A. Kuhlmann, J. Reimann, S. Will, J. Aerosol Sci. 37, 1696–1716 (2006)

    ADS  Google Scholar 

  33. A. Filippov, M. Zurita, D. Rosner, J. Colloid Interface Sci. 229, 261–273 (2000)

    ADS  Google Scholar 

  34. F. Liu, G. Smallwood, Appl. Phys. B 104, 343–355 (2011)

    ADS  Google Scholar 

  35. J. Johnsson, H. Bladh, N.-E. Olofsson, P.-E. Bengtsson, Appl. Phys. B 112, 321–332 (2013)

    ADS  Google Scholar 

  36. G.A. Kelesidis, E. Goudeli, S.E. Pratsinis, Carbon 121, 527–535 (2017)

    Google Scholar 

  37. F. Liu, M. Yang, F.A. Hill, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 383–395 (2006)

    ADS  Google Scholar 

  38. F. Liu, G.J. Smallwood, D.R. Snelling, J. Quant. Spectrosc. Radiat. Transf. 93, 301–312 (2005)

    ADS  Google Scholar 

  39. K. Daun, K. Thomson, F. Liu, J. Heat Transf. 130, 112701 (2008)

    Google Scholar 

  40. M. Singh, J.P. Abrahamson, R.L.Vander Wal, Appl. Phys. B 124, 130 (2018)

    ADS  Google Scholar 

  41. S.T. Moghaddam, P.J. Hadwin, K.J. Daun, J. Aerosol Sci. 111, 36–50 (2017)

    ADS  Google Scholar 

  42. C.M. Sorensen, J. Yon, F. Liu, J. Maughan, W.R. Heinson, M.J. Berg, J. Quant. Spectrosc. Radiat. Transf. 217, 459–473 (2018)

    ADS  Google Scholar 

  43. P.J. Hadwin, T. Sipkens, K. Thomson, F. Liu, K. Daun, Appl. Phys. B 122, 1 (2016)

    ADS  Google Scholar 

  44. P.J. Hadwin, T. Sipkens, K. Thomson, F. Liu, K. Daun, Appl. Phys. B 123, 114 (2017)

    ADS  Google Scholar 

  45. T. Sipkens, R. Mansmann, K. Daun, N. Petermann, J. Titantah, M. Karttunen, H. Wiggers, T. Dreier, C. Schulz, Appl. Phys. B 116, 623–636 (2014)

    ADS  Google Scholar 

  46. B. Crosland, M. Johnson, K. Thomson, Appl. Phys. B 102, 173–183 (2011)

    ADS  Google Scholar 

  47. B. Crosland, K. Thomson, M. Johnson, Appl. Phys. B 112, 381–393 (2013)

    ADS  Google Scholar 

  48. G.M. Faeth, Ü.Ö. Köylü, Combust. Sci. Technol. 108, 207–229 (1995)

    Google Scholar 

  49. F. Liu, K. Daun, D.R. Snelling, G.J. Smallwood, Appl. Phys. B 83, 355–382 (2006)

    ADS  Google Scholar 

  50. K. Daun, S. Huberman, Int. J. Heat Mass Transf. 55, 7668–7676 (2012)

    Google Scholar 

  51. K. Daun, Int. J. Heat Mass Transf. 52, 5081–5089 (2009)

    Google Scholar 

  52. A. Filippov, D. Rosner, Int. J. Heat Mass Transf. 43, 127–138 (2000)

    Google Scholar 

  53. N. Fuchs, Phys. Z. Sowjet. 6, 224–243 (1934)

    Google Scholar 

  54. G.J. Smallwood, D.R. Snelling, F. Liu, Ö.L. Gülder, J. Heat Transf. 123, 814–818 (2001)

    Google Scholar 

  55. A. Charnes, E.L. Frome, P.-L. Yu, J. Am. Stat. Assoc. 71, 169–171 (1976)

    Google Scholar 

  56. U.V. Toussaint, Rev. Mod. Phys. 83, 943 (2011)

    ADS  Google Scholar 

  57. F.J.T. Huber, S. Will, K.J. Daun, J. Quant. Spectrosc. Radiat. Transf. 184, 27–39 (2016)

    ADS  Google Scholar 

  58. L. Fahrmeir, C. Heumann, R. Künstler, I. Pigeot, G. Tutz, Statistik: Der Weg zur Datenanalyse (Springer, Berlin, 2016)

    MATH  Google Scholar 

  59. T.A. Sipkens, P.J. Hadwin, S.J. Grauer, K.J. Daun, Appl. Opt. 56, 8436–8445 (2017)

    ADS  Google Scholar 

  60. X. López-Yglesias, P.E. Schrader, H.A. Michelsen, J. Aerosol Sci. 75, 43–64 (2014)

    ADS  Google Scholar 

  61. D.R. Snelling, F. Liu, G.J. Smallwood, Ö.L. Gülder, Combust. Flame 136, 180–190 (2004)

    Google Scholar 

  62. O. Link, D. Snelling, K. Thomson, G. Smallwood, Proc. Combust. Inst. 33, 847–854 (2011)

    Google Scholar 

  63. R.B. Schnabel, E. Eskow, SIAM J. Sci. Comput. 11, 1136–1158 (1990)

    Google Scholar 

  64. T. Fu, X. Cheng, Z. Yang, Appl. Opt. 47, 6112–6123 (2008)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Will.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bauer, F.J., Daun, K.J., Huber, F.J.T. et al. Can soot primary particle size distributions be determined using laser-induced incandescence?. Appl. Phys. B 125, 109 (2019). https://doi.org/10.1007/s00340-019-7219-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7219-7

Navigation