Skip to main content
Log in

Quasi-in-situ sizing of nanoparticles by laser-induced incandescence during the floating chemical vapor deposition synthesis of carbon nanotubes

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this study, laser-induced incandescence (LII) diagnostic technique was applied for iron-based nanoparticle (NP) sizing during the floating chemical vapor deposition (CVD) synthesis of carbon nanotubes (CNTs). Transmission electron microscopy (TEM) was used to characterize the nature and size of NPs. The LII signal was simulated by taking into account the carbon-encapsulated iron NP density, heat capacity, size distribution, etc. A detailed sensitivity and uncertainty of the key parameters on the evaluated particle size for this model has also been estimated. Using the developed approach, the evolution of NPs in the gas phase along the reactor axis was investigated at 650, 750 and 850 °C. It was found that the evaluated sizes from LII signals were in good agreement with the ones obtained by TEM measurements. The NP size is highly dependent on the temperature under the studied conditions but it does not show obvious difference along the reactor axis. This study reveals an important LII application prospect to understand the catalyst particle behaviors for better control over CNT growth during the floating CVD process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.B. Dichiara, J. Yuan, S. Yao, A. Sylvestre, L. Zimmer, J. Bai, J. Mater. Chem. A 2(21), 7980 (2014)

    Google Scholar 

  2. Q. Zhang, J.Q. Huang, W.Z. Qian, Y.Y. Zhang, F. Wei, Small 9(8), 1237 (2013)

    Google Scholar 

  3. A.B. Dichiara, S.F. Harlander, R.E. Rogers, RSC Adv. 5(76), 61508 (2015)

    Google Scholar 

  4. Ihsanullah, A. Abbas, A.M. Al-Amer, T. Laoui, M.J. Al-Marri, M.S. Nasser, M. Khraisheh, M.A. Atieh, Sep. Purif. Technol. 157, 141 (2016)

    Google Scholar 

  5. W. Li, A. Dichiara, J. Bai, Compos. Sci. Technol. 74, 221 (2013)

    Google Scholar 

  6. G. Mittal, V. Dhand, K.Y. Rhee, S.J. Park, W.R. Lee, J. Ind. Eng. Chem. 21, 11 (2015)

    Google Scholar 

  7. V. Jourdain, C. Bichara, Carbon 58, 2 (2013)

    Google Scholar 

  8. R. Guzmán de Villoria, A.J. Hart, B.L. Wardle, ACS Nano 5(6), 4850 (2011)

    Google Scholar 

  9. T. Yamada, A. Maigne, M. Yudasaka, K. Mizuno, D.N. Futaba, M. Yumura, S. Iijima, K. Hata, Nano Lett. 8(12), 4288 (2008)

    ADS  Google Scholar 

  10. A. Moisala, A.G. Nasibulin, E.I. Kauppinen, J. Phys. Condens. Matter 15(42), S3011 (2003)

    ADS  Google Scholar 

  11. C. Castro, M. Pinault, S. Coste-Leconte, D. Porterat, N. Bendiab, C. Reynaud, M. Mayne-L’Hermite, Carbon 48(13), 3807 (2010)

    Google Scholar 

  12. Q. Zhang, J.Q. Huang, M.Q. Zhao, W.Z. Qian, F. Wei, Appl. Phys. A Mater. Sci. Process. 94(4), 853 (2009)

    ADS  Google Scholar 

  13. C. Castro, M. Pinault, D. Porterat, C. Reynaud, M. Mayne-L’Hermite, Carbon 61, 585 (2013)

    Google Scholar 

  14. C.L. Cheung, A. Kurtz, H. Park, C.M. Lieber, J. Phys. Chem. B 106(10), 2429 (2002)

    Google Scholar 

  15. R. Rao, D. Liptak, T. Cherukuri, B.I. Yakobson, B. Maruyama, Nat. Mater. 11(3), 213 (2012)

    ADS  Google Scholar 

  16. Y. Liu, A. Dobrinsky, B.I. Yakobson, Phys. Rev. Lett. 105(23), 235502 (2010)

    ADS  Google Scholar 

  17. R.L.V. Wal, D.L. Dietrich, Appl. Opt. 34(6), 1103 (1995)

    ADS  Google Scholar 

  18. R.W. Weeks, W.W. Duley, J. Appl. Phys. 45(10), 4661 (1974)

    ADS  Google Scholar 

  19. A.C. Eckbreth, J. Appl. Phys. 48(11), 4473 (1977)

    ADS  Google Scholar 

  20. L.A. Melton, Appl. Opt. 23(13), 2201 (1984)

    ADS  Google Scholar 

  21. P. Roth, A. Filippov, J. Aerosol Sci. 27(1), 95 (1996)

    ADS  Google Scholar 

  22. A. Filippov, M. Markus, P. Roth, J. Aerosol Sci. 30(1), 71 (1999)

    ADS  Google Scholar 

  23. S. Will, S. Schraml, A. Leipertz, Opt. Lett. 20(22), 2342 (1995)

    ADS  Google Scholar 

  24. R.L. Vander Wal, M.Y. Choi, Carbon 37(2), 231 (1999)

    Google Scholar 

  25. B. Axelsson, R. Collin, P.E. Bengtsson, Appl. Opt. 39(21), 3683 (2000)

    ADS  Google Scholar 

  26. H. Bladh, P.E. Bengtsson, Appl. Phys. B 78(2), 241 (2004)

    ADS  Google Scholar 

  27. D. Snelling, K. Thomson, F. Liu, G. Smallwood, Appl. Phys. B 96(4), 657 (2009)

    ADS  Google Scholar 

  28. H.A. Michelsen, P.O. Witze, D. Kayes, S. Hochgreb, Appl. Opt. 42(27), 5577 (2003)

    ADS  Google Scholar 

  29. H.A. Michelsen, J. Chem. Phys. 118(15), 7012 (2003)

    ADS  Google Scholar 

  30. S. Dankers, A. Leipertz, S. Will, J. Arndt, K. Vogel, S. Schraml, A. Hemm, Chem. Eng. Technol. 26(9), 966 (2003)

    Google Scholar 

  31. R.L. Vander Wal, G.M. Berger, T.M. Ticich, P.D. Patel, Appl. Opt. 41(27), 5678 (2002)

    ADS  Google Scholar 

  32. D.R. Snelling, G.J. Smallwood, F. Liu, Ö.L. Gülder, W.D. Bachalo, Appl. Opt. 44(31), 6773 (2005)

    ADS  Google Scholar 

  33. B.F. Kock, B. Tribalet, C. Schulz, P. Roth, Combust. Flame 147(1–2), 79 (2006)

    Google Scholar 

  34. A. Leipertz, S. Dankers, Part. Part. Syst. Charact. 20(2), 81 (2003)

    Google Scholar 

  35. Y. Murakami, T. Sugatani, Y. Nosaka, J. Phys. Chem. A 109(40), 8994 (2005)

    Google Scholar 

  36. T. Sipkens, G. Joshi, K. Daun, Y. Murakami, J. Heat Transf. 135(5), 052401 (2013)

    Google Scholar 

  37. A. Eremin, E. Gurentsov, Appl. Phys. A 119(2), 615 (2015)

    ADS  Google Scholar 

  38. L. Landström, P. Heszler, J. Phys. Chem. B 108(20), 6216 (2004)

    Google Scholar 

  39. R.L. Vander Wal, T.M. Ticich, J.R. West, Appl. Opt. 38(27), 5867 (1999)

    ADS  Google Scholar 

  40. R. Starke, B. Kock, P. Roth, Shock Waves 12(5), 351 (2003)

    ADS  Google Scholar 

  41. A. Eremin, E. Gurentsov, C. Schulz, J. Phys. D Appl. Phys. 41(5), 055203 (2008)

    ADS  Google Scholar 

  42. A. Eremin, E. Gurentsov, E. Popova, K. Priemchenko, Appl. Phys. B 104(2), 285 (2011)

    ADS  Google Scholar 

  43. B.F. Kock, C. Kayan, J. Knipping, H.R. Orthner, P. Roth, Proc. Combust. Inst. 30(1), 1689 (2005)

    Google Scholar 

  44. A. Eremin, E. Gurentsov, E. Mikheyeva, K. Priemchenko, Appl. Phys. B 112(3), 421 (2013)

    ADS  Google Scholar 

  45. T. Sipkens, N. Singh, K. Daun, N. Bizmark, M. Ioannidis, Appl. Phys. B 119(4), 561 (2015)

    Google Scholar 

  46. L. Landström, K. Elihn, M. Boman, C. Granqvist, P. Heszler, Appl. Phys. A 81(4), 827 (2005)

    ADS  Google Scholar 

  47. J. Knipping, H. Wiggers, B. Kock, T. Hülser, B. Rellinghaus, P. Roth, Nanotechnology 15(11), 1665 (2004)

    ADS  Google Scholar 

  48. A.V. Eremin, E.V. Gurentsov, S.A. Musikhin, Mater. Res. Express 3(10), 105041 (2016)

    ADS  Google Scholar 

  49. A. Eremin, E. Gurentsov, S. Musikhin, J. Alloys Compd 727, 711 (2017)

    Google Scholar 

  50. E. Cenker, G. Bruneaux, L. Pickett, C. Schulz, SAE Int. J. Eng. 6(1), 352 (2013)

    Google Scholar 

  51. R. Ryser, T. Gerber, T. Dreier, Combust. Flame 156(1), 120 (2009)

    Google Scholar 

  52. B. Bougie, M. Tulej, T. Dreier, N. Dam, J. Ter Meulen, T. Gerber, Appl. Phys. B 80(8), 1039 (2005)

    ADS  Google Scholar 

  53. H. Oltmann, J. Reimann, S. Will, Combust. Flame 157(3), 516 (2010)

    Google Scholar 

  54. T.D. Durbin, K. Johnson, D.R. Cocker, J.W. Miller, H. Maldonado, A. Shah, C. Ensfield, C. Weaver, M. Akard, N. Harvey et al., Environ. Sci. Technol. 41(17), 6199 (2007)

    ADS  Google Scholar 

  55. G.J. Smallwood, D. Clavel, D. Gareau, R.A. Sawchuk, D.R. Snelling, P.O. Witze, B. Axelsson, W.D. Bachalo, Ö.L. Gülder, SAE Trans. 111, 1345–1360 (2002)

    Google Scholar 

  56. M. Johnson, M. Hilton, D. Waterman, J. Black, Meas. Sci. Technol. 14(7), 1146 (2003)

    ADS  Google Scholar 

  57. P.O. Witze, SAE Trans. 111, 661–672 (2002)

    Google Scholar 

  58. J.D. Black, M. Hilton, M.P. Johnson, D. Waterman, in Laser Applications in Medicine, Biology, and Environmental Science, vol. 5149 (International Society for Optics and Photonics, 2003), pp. 265–273

  59. M. Cau, N. Dorval, B. Attal-Trétout, J.L. Cochon, A. Foutel-Richard, A. Loiseau, V. Krüger, M. Tsurikov, C.D. Scott, Phys. Rev. B 81, 165416 (2010)

    ADS  Google Scholar 

  60. S. Yatom, J. Bak, A. Khrabryi, Y. Raitses, Carbon 117, 154 (2017)

    Google Scholar 

  61. Y. Xu, Y. Ma, Y. Liu, S. Feng, D. He, P. Haghi-Ashtiani, A. Dichiara, L. Zimmer, J. Bai, J. Phys. Chem. C 122(11), 6437 (2018)

    Google Scholar 

  62. B. Satishkumar, A. Govindaraj, R. Sen, C. Rao, Chem. Phys. Lett. 293(1), 47 (1998)

    ADS  Google Scholar 

  63. R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, S. Maruyama, J. Phys. Chem. C 113(18), 7511 (2009)

    Google Scholar 

  64. D. He, M. Bozlar, M. Genestoux, J. Bai, Carbon 48(4), 1159 (2010)

    Google Scholar 

  65. A. Dichiara, J. Bai, Diam. Relat. Mater. 29, 52 (2012)

    ADS  Google Scholar 

  66. D.W. Marquardt, J. Soc. Ind. Appl. Math. 11(2), 431 (1963)

    Google Scholar 

  67. E.V. Gurentsov, A.V. Eremin, High Temp. 49(5), 667 (2011)

    Google Scholar 

  68. E. Gurentsov, A. Eremin, P. Roth, R. Starke, Kinet. Catal. 46(3), 309 (2005)

    Google Scholar 

  69. I.M. Sobol, Math. Model. Comput. Exp. 1(4), 407 (1993)

    Google Scholar 

  70. I.M. Sobol, Math. Comput. Simul. 55(1–3), 271 (2001)

    Google Scholar 

  71. J. Nossent, P. Elsen, W. Bauwens, Environ. Model. Softw. 26(12), 1515 (2011)

    Google Scholar 

  72. G. Glen, K. Isaacs, Environ. Model. Softw. 37, 157 (2012)

    Google Scholar 

  73. K. Kuwana, K. Saito, Proc. Combust. Inst. 31(2), 1857 (2007)

    Google Scholar 

  74. D. Conroy, A. Moisala, S. Cardoso, A. Windle, J. Davidson, Chem. Eng. Sci. 65(10), 2965 (2010)

    Google Scholar 

  75. S. Futko, B. Shulitskii, V. Labunov, E. Ermolaeva, J. Eng. Phys. Thermophys. 88(6), 1432 (2015)

    Google Scholar 

  76. Y. Ma, A.B. Dichiara, D. He, L. Zimmer, J. Bai, Carbon 107, 171 (2016)

    Google Scholar 

  77. P. Ho, M.E. Coltrin, W.G. Breiland, J. Phys. Chem. 98(40), 10138 (1994)

    Google Scholar 

  78. Y. Nozaki, K. Kongo, T. Miyazaki, M. Kitazoe, K. Horii, H. Umemoto, A. Masuda, H. Matsumura, J. Appl. Phys. 88(9), 5437 (2000)

    ADS  Google Scholar 

  79. C. Kaminski, P. Ewart, Appl. Phys. B 61(6), 585 (1995)

    ADS  Google Scholar 

  80. S. Yatom, A. Khrabry, J. Mitrani, A. Khodak, I. Kaganovich, V. Vekselman, B. Stratton, Y. Raitses, MRS Commun. 8(3), 842 (2018)

    Google Scholar 

Download references

Acknowledgements

This work was carried out within the MATMECA consortium and supported by the ANR under contract number ANR-10-EQPX-37. Y. Xu gratefully acknowledges the financial support of China Scholarship Council (CSC). The authors thank Mr. Xiangtuo Chen for the helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delong He or Jinbo Bai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Laser-Induced Incandescence”, guest edited by Klaus Peter Geigle and Stefan Will.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Ma, Y., He, D. et al. Quasi-in-situ sizing of nanoparticles by laser-induced incandescence during the floating chemical vapor deposition synthesis of carbon nanotubes. Appl. Phys. B 125, 93 (2019). https://doi.org/10.1007/s00340-019-7201-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7201-4

Navigation