Applied Physics B

, 125:62 | Cite as

Detection of elemental mercury using a frequency-doubled diode laser with wavelength modulation spectroscopy

  • Xiutao LouEmail author
  • Lianjie Xu
  • Yongkang Dong
  • Tie Zhang
  • Li Wan
  • Sailing He


We demonstrate a new method for elemental mercury sensing by wavelength modulation spectroscopy (WMS) using a tunable ultraviolet laser generated through a process of second-harmonic generation (SHG). The WMS is implemented by fast modulating the injection current of the Fabry–Perot-type green diode laser equipped with a Littrow grating to increase the laser-mode power density. The technique of correlation spectroscopy is exploited to deal with the signal variations due to mode hops and guarantee the measurement accuracy. According to the performance evaluation, the SHG-WMS system exhibits a better sensitivity (0.15 µg/m3 for 1-m pathlength with an integration time of 10 s) and a comparably high linearity (R2 = 0.9995 within the range of 60 µg/m2) compared with the direct absorption scheme. The employment of WMS significantly simplifies the data processing for extraction of small mercury absorption signals from the large and complex SHG light background, and, thus, give robust measurement results. High-harmonic (4f and 6f) detections are also carried out, showing a great potential for suppression of large residual amplitude modulation background. The proposed SHG-WMS system shows great promise for rapid and sensitive mercury sensing in industrial fields.



This work is supported by the National Natural Science Foundation of China (Grant nos. 61775049 and 61575052), Jiangsu Provincial Key Research and Development Program (BE2015653), and the National Key Research and Development Program of China (2018YFC1407503).


  1. 1.
    UNEP, Global Mercury Assessment 2013: Sources, emissions, releases and environmental transport (UNEP Chemicals Branch, Geneva, Switzerland) (2013).Google Scholar
  2. 2.
    UNEP, Minamata convention on mercury (UNEP, Geneva, Switzerland) (2013)Google Scholar
  3. 3.
    J.H. Pavlish, E.A. Sondreal, M.D. Mann, E.S. Olson, K.C. Galbreath, D.L. Laudal, S.A. Benson, Fuel. Process. Technol. 82, 89 (2003)CrossRefGoogle Scholar
  4. 4.
    R.J. Valente, C. Shea, K.L. Humes, R.L. Tanner, Atmos. Environ. 41, 1861 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    L. N. Suvarapu and S. O. Baek, Int. J. Anal. Chem. 2017, 3624015 (2017).Google Scholar
  6. 6.
    D.L. Laudal, J.S. Thompson, J.H. Pavlish, L.A. Brickett, P. Chu, Fuel. Process. Technol. 85, 501 (2004)CrossRefGoogle Scholar
  7. 7.
    P.C. Swartzendruber, D.A. Jaffe, B. Finley, Atmos. Environ. 43, 3648 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    A.A. El-Feky, W. El-Azab, M.A. Ebiad, M.B. Masod, S. Faramawy, J. Nat. Gas. Sci. Eng. 54, 189 (2018)CrossRefGoogle Scholar
  9. 9.
    K.H. Kim, V.K. Mishra, S. Hong, Atmos. Environ. 40, 3281 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    S.B. Darby, P.D. Smith, D.S. Venables, Analyst 137, 2318 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    A. Pierce, D. Obrist, H. Moosmuller, X. Fain, C. Moore, Atmos. Meas. Tech. 6, 1477 (2013)CrossRefGoogle Scholar
  12. 12.
    A.M. Pierce, C.W. Moore, G. Wohlfahrt, L. Hortnagl, N. Kljun, D. Obrist, Environ. Sci. Technol. 49, 1559 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M. Lian, L.H. Shang, Z. Duan, Y.Y. Li, G.Y. Zhao, S.M. Zhu, G.L. Qiu, B. Meng, J. Sommar, X.B. Feng, S. Svanberg, Environ. Pollut 240, 353 (2018)CrossRefGoogle Scholar
  14. 14.
    L. Mei, G.Y. Zhao, S. Svanberg, Opt. Lasers Eng. 55, 128 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Bauer, S. Everhart, J. Remeika, C.T. Ernest, A.J. Hynes, Atmos. Meas. Tech. 7, 4251 (2014)CrossRefGoogle Scholar
  16. 16.
    J. Hodgkinson, R.P. Tatam, Meas. Sci. Technol. 24, 012004 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    P. Werle, Spectrochim. Acta A 54, 197 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    J. Alnis, U. Gustafsson, G. Somesfalean, S. Svanberg, Appl. Phys. Lett. 76, 1234 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    A.E. Carruthers, T.K. Lake, A. Shah, J.W. Allen, W. Sibbett, K. Dholakia, Opt. Commun. 255, 261 (2005)ADSCrossRefGoogle Scholar
  20. 20.
    T.N. Anderson, J.K. Magnuson, R.P. Lucht, Appl. Phys. B 87, 341 (2007)ADSCrossRefGoogle Scholar
  21. 21.
    G. Almog, M. Scholz, W. Weber, P. Leisching, W. Kaenders, T. Udem, Rev. Sci. Instrum. 86, 033110 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    X.T. Lou, T. Zhang, H.Z. Lin, S.Y. Gao, L.J. Xu, J.N. Wang, L. Wan, S.L. He, Opt. Express 24, 27509 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    J. Paul, Y. Kaneda, T.L. Wang, C. Lytle, J.V. Moloney, R.J. Jones, Opt. Lett. 36, 61 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    A. Srivastava, J.T. Hodges, Anal. Chem. 90, 6781 (2018)CrossRefGoogle Scholar
  25. 25.
    X.T. Lou, G. Somesfalean, B. Chen, Y.G. Zhang, H.S. Wang, Z.G. Zhang, S.H. Wu, Y.K. Qin, Opt. Lett. 35, 1749 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    X.T. Lou, G. Somesfalean, Z.G. Zhang, Appl. Opt. 47, 2392 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    X.T. Lou, G. Somesfalean, S. Svanberg, Z.G. Zhang, S.H. Wu, Opt. Express 20, 4927 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Arita, P. Ewart, Opt. Commun. 281, 2561 (2008)ADSCrossRefGoogle Scholar
  29. 29.
    P. Kluczynski, J. Gustafsson, A. Lindberg, O. Axner, Spectrochim. Acta B 56, 1277 (2001)ADSCrossRefGoogle Scholar
  30. 30.
  31. 31.
    W.G. Schweitzer Jr., J. Opt. Soc. Am. 53, 1055 (1963)ADSCrossRefGoogle Scholar
  32. 32.
    F. Bitter, Appl. Opt. 1, 1 (1962)ADSCrossRefGoogle Scholar
  33. 33.
    R.Y. Sun, J.E. Sonke, L.E. Heimburger, H.E. Belkin, G.J. Liu, D. Shome, E. Cukrowska, C. Liousse, O.S. Pokrovsky, D.G. Streets, Environ. Sci. Technol. 48, 7660 (2014)ADSCrossRefGoogle Scholar
  34. 34.
    M.L. Huber, A. Laesecke, D.G. Friend, Ind. Eng. Chem. Res. 45, 7351 (2006)CrossRefGoogle Scholar
  35. 35.
    R. Dumarey, R.J.C. Brown, W.T. Corns, A.S. Brown, P.B. Stockwell, Accredit. Qual. Assur. 15, 409 (2010)CrossRefGoogle Scholar
  36. 36.
    C.R. Quétel, M. Zampella, R.J.C. Brown, Trac-Trend. Anal. Chem. 85, 81 (2016)Google Scholar
  37. 37.
    K.H. Kim, R. Ebinghaus, W.H. Schroeder, P. Blanchard, H.H. Kock, A. Steffen, F.A. Froude, M.Y. Kim, S.M. Hong, J.H. Kim, J. Atmos. Chem. 50, 1 (2005)CrossRefGoogle Scholar
  38. 38.
    P. Kluczynski, A.M. Lindberg, O. Axner, Appl. Opt. 40, 783 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    P. Kluczynski, A.M. Lindberg, O. Axner, Appl. Opt. 40, 794 (2001)ADSCrossRefGoogle Scholar
  40. 40.
    P. Werle, Appl. Phys. B 102, 313 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    C. Thibon, F. Dross, A. Marceaux, N. Vodjdani, IEEE Photonic Tech. Lett. 17, 1283 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    O. Axner, P. Kluczynski, A.M. Lindberg, J. Quant. Spectrosc. Radiat. Transf. 68, 299 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    C.R. Webster, J. Opt. Soc. Am. B 2, 1464 (1985)ADSCrossRefGoogle Scholar
  44. 44.
    C.R. Markus, A.J. Perry, J.N. Hodges, B.J. McCall, Opt. Express 25, 3709 (2017)ADSCrossRefGoogle Scholar
  45. 45.
    X.T. Lou, C. Chen, Y.B. Feng, Y.K. Dong, Opt. Lett. 43, 2872 (2018)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiutao Lou
    • 1
    Email author
  • Lianjie Xu
    • 1
  • Yongkang Dong
    • 2
  • Tie Zhang
    • 3
  • Li Wan
    • 4
  • Sailing He
    • 3
  1. 1.Department of PhysicsHarbin Institute of TechnologyHarbinChina
  2. 2.National Key Laboratory of Science and Technology on Tunable LaserHarbin Institute of TechnologyHarbinChina
  3. 3.Centre for Optical and Electromagnetic Research, National Engineering Research Center for Optical InstrumentsZhejiang UniversityHangzhouChina
  4. 4.Suzhou Reliatek Environmental Technology Co., Ltd.ChangshuChina

Personalised recommendations