Applied Physics B

, 125:59 | Cite as

Controllable symmetric caustic beams

  • Yixian QianEmail author
  • Hongxing Mao
  • Songtao Lai


We proposed controllable symmetric caustic beams (SCBs), which can follow any desired convex or concave propagation trajectory. The analytical relation between propagation trajectory and phase was constructed by utilizing caustic theory. We performed numerical simulations to generate SCBs and experimentally verified the simulated results. Despite differences in propagation trajectories, each part of the generated SCBs showed remarkable self-healing and accelerating properties. The beams also exhibited distinctly symmetric intensity profiles and tunable trajectories. Moreover, the SCBs had a thin needle-like structure in their intensity profile and demonstrated autofocusing properties. These intriguing properties of SCBs may be useful in applications, such as multiparticle manipulation, fluorescent imaging, and Raman spectroscopy.



This work was supported by Zhejiang Provincial Natural Science Foundation (Grant No. LY17A040002), National Natural Science Foundation of China (Grant No. 61377014), and National Innovation and Entrepreneurship Training Program for College Students.

Supplementary material

340_2019_7171_MOESM1_ESM.mpg (674 kb)
Supplementary material 1 (MPG 674 KB)
340_2019_7171_MOESM2_ESM.mpg (556 kb)
Supplementary material 2 (MPG 556 KB)


  1. 1.
    M.V. Berry, N.L. Balazs, Am. J. Phys. 47, 264 (1979)ADSCrossRefGoogle Scholar
  2. 2.
    G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)ADSCrossRefGoogle Scholar
  3. 3.
    X. Chu, G. Zhou, R. Chen, Phys. Rev. A 85, 13815 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    R. Cao, Y. Yang, J. Wang, J. Bu, M. Wang, X. Yuan, Appl. Phys. Lett. 99, 261106 (2011)ADSCrossRefGoogle Scholar
  5. 5.
    I. Dolev, T. Ellenbogen, N. Voloch-Bloch, A. Arie, Appl. Phys. Lett. 95, 201112 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Y. Hu, D. Bongiovanni, Z. Chen, Opt. Lett. 38, 3387 (2013)ADSCrossRefGoogle Scholar
  7. 7.
    E. Greenfield, M. Segev, W. Walasik, O. Raz, Phys. Rev. Lett. 106, 213902 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Qian, S. Zhang, Opt. Express 24, 9489 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    T. Poston, I. Stewart, Catastrophe Theory and Its Applications (Pitman, Dover, 1996)zbMATHGoogle Scholar
  10. 10.
    V.V. Kotlyar, А.K. Аlexey, Opt. Commun. 313, 290 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    S. Barwick, Opt. Lett. 35, 4118 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    E. Abramochkin, E. Razueva, Opt. Lett. 36, 3732 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    D. Deng, C. Chen, X. Zhao, Appl. Phys. B 110, 433 (2013)ADSCrossRefGoogle Scholar
  14. 14.
    P. Vaveliuk, A. Lencina, J.A. Rodrigo, Opt. Lett. 39, 2370 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Opt. Lett. 36, 2883 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Wang, L. Shi, B. Lukyanchuk, Nat. Photon. 2, 501 (2008)CrossRefGoogle Scholar
  17. 17.
    I.D. Chremmos, Z. Chen, D.N. Christodoulides, Opt. Lett. 37, 5003 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    J.W. Goodman, Introduction to Fourier Optics, (McGraw-Hill, New York, 1996)Google Scholar
  19. 19.
    L. Froehly, F. Courvoisier, A. Mathis, M. Jacquot, L. Furfaro, R. Giust, P.A. Lacourt, J.M. Dudley, Opt. Express 19, 16455 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Cottrell, J.A. Davis, T.M. Hazard, Opt. Lett. 34, 2634 (2009)ADSCrossRefGoogle Scholar
  21. 21.
    P. Vaveliuk, A. Lencina, Jose A. Rodrigo, M. M. Osca, Phys. Rev A 92, 033850 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    P. Vaveliuk, A. Lencina, M.M. Osca, Opt. Lett. 42, 4008 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, Nature 419, 145 (2002)ADSCrossRefGoogle Scholar
  24. 24.
    P. Vaveliuk, M.M. Osca, Y.X. Ren, R.D. Lu, Phys. Rev. A 95, 03838 (2017)CrossRefGoogle Scholar
  25. 25.
    P. Pavel, K. Miroslav, J.V. Moloney, G.A. Siviloglou, Science 324, 229 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    P. Panagiotopoulos, D.G. Papazoglou, A. Couairon, Nat. Commun. 4, 2622 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Information OpticsZhejiang Normal UniversityJinhuaChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting Technology and InstrumentsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations