Skip to main content
Log in

Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

In this paper, laser-induced breakdown spectroscopy (LIBS) combined with artificial neural network (ANN) was investigated to classify four species of wood samples (Africa rosewood, Brazil bubinga, Myanmar padauk, and Pterocarpus erinaceus). The wood samples were ablated by laser pulses to generate plasma emission, which was measured by a spectrometer and transmitted into a computer for further data analysis. The feature spectral data were selected out based on loadings of principal component analysis (PCA) and normalized using the sum of all feature spectra data. The ANN model was built based on the feature spectral data to classify the wood species. The relationship between correct classification rate (CCR) and settings of ANN was discussed. The CCR of ANN model for test set data achieved 100% with multilayer perceptron network and Broyden–Fletcher–Goldfarb–Shanno iterative algorithm. This result was also compared with the CCRs of PLS-DA, KNN, and SIMCA model for test set (82.5%, 95.83%, and 51.67%, respectively). Using the ratio between feature variables to recognize the species of wood was also discussed. The experimental results demonstrated that LIBS integrated with ANN could be applied for analyzing and recognizing wood species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. Kopac, S. Sali. J. Mater. Process. Technol. 133, 134–142 (2003)

    Article  Google Scholar 

  2. Y.B. Ma, J. Stubb, I. Kontro, K. Nieminen, M. Hummel, H. Sixta, Carbohydr. Polym. 179, 145–151 (2018)

    Article  Google Scholar 

  3. M. Stahl, J. Berghel. Biomass Bioenergy 35, 4849–4854 (2011)

    Article  Google Scholar 

  4. M. Francisco-Fernandez, J. Tarrio-Saavedra, A. Mallik, S. Naya, Chemometr. Intell. Lab. Syst. 118, 159–172 (2012)

    Article  Google Scholar 

  5. J. Ruelle, J. Beauchêne, H. Yamamoto, B. Thibaut, Wood Sci. Technol. 45, 339–357 (2010)

    Article  Google Scholar 

  6. J. De la Fuente-León, E. Lafuente-Jimenez, D. Hermosilla, M. Broto-Cartagena, A. Gascó, For. Syst. 23, 64–71 (2014)

    Google Scholar 

  7. J.Y. Tou, Y.H. Tay, P.Y. Lau, Rotational invariant wood species recognition through wood species verification, in First asian conference on intelligent information and database systems. IEEE, Dong Hoi, Vietnam (2009). https://doi.org/10.1109/ACIIDS.2009.10

  8. M.J. Liebmann, J. Farella, C.I. Roos, A. Stack, S. Martini, T.W. Swetnam, Proc. Natl. Acad. Sci. USA 113, E696–E704 (2016)

    Article  ADS  Google Scholar 

  9. F. Austerlitz, S. Mariette, N. Machon, P.H. Gouyon, B. Godelle, Genetics 154, 1309–1321 (2000)

    Google Scholar 

  10. H. Han, S. Li, X. Gan, X. Zhang, Bot. Sci. 95, 283–294 (2017)

    Article  Google Scholar 

  11. M. Khalid, E. Lew, L. Yi, R. Yusof, M. Nadaraj, Int. J. Simul. Syst. Sci. Technol. 9, 9–18 (2008)

    Google Scholar 

  12. V. Piuri, F. Scott, IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 40, 358–366 (2010)

    Article  Google Scholar 

  13. K. Gasim, A. Boro, S. Harjoko, Hartati, Int. J. Adv. Comput. Sci. Appl. 4, 48–53 (2013)

    Google Scholar 

  14. J.C. Hermanson, A.C. Wiedenhoeft. IAWA J. 32, 233–250 (2011)

    Article  Google Scholar 

  15. O. Hagman, Holz Als Roh-und Werkst 55, 377–382 (1997)

    Article  Google Scholar 

  16. M.J. Asif, C.H. Cannon, Plant Mol. Biol. Rep. 23, 185–192 (2005)

    Article  Google Scholar 

  17. L.H. Tnah, S.L. Lee, K.K.S. Ng, S. Bhassu, R.Y. Othman, Wood Sci. Technol. 46, 813–825 (2011)

    Article  Google Scholar 

  18. A. Sandak, J. Sandak, M. Negri, Wood Sci. Technol. 45, 35–48 (2010)

    Article  Google Scholar 

  19. P.A. Cooper, D. Jeremic, S. Radivojevic, Y.T. Ung, B. Leblon, Can. J. For. Res.-Rev. Can. Rech. For. 41, 2150–2157 (2011)

    Article  Google Scholar 

  20. K. Watanabe, S.D. Mansfield, S. Avramidis, Eur. J. Wood Wood Products 70, 61–67 (2010)

    Article  Google Scholar 

  21. S. Tsuchikawa, M. Schwanninger, Appl. Spectrosc. Rev. 48, 560–587 (2013)

    Article  ADS  Google Scholar 

  22. D.W. Hahn, N. Omenetto, Appl. Spectrosc. 66, 347–419 (2012)

    Article  ADS  Google Scholar 

  23. J. Singh, R. Kumar, S. Awasthi, V. Singh, A.K. Rai, Food Chem. 221, 1778–1783 (2017)

    Article  Google Scholar 

  24. C.M. Ahamer, S. Eschlbock-Fuchs, P.J. Kolmhofer, R. Rossler, N. Huber, J.D. Pedarnig, Spectroc. Acta Pt. B At. Spectr. 122, 157–164 (2016)

    Article  ADS  Google Scholar 

  25. I. Gaona, J. Serrano, J. Moros, J.J. Laserna, Spectroc. Acta Pt. B At. Spectr. 96, 12–20 (2014)

    Article  ADS  Google Scholar 

  26. C. Lefebvre, A. Catala-Espi, P. Sobron, A. Koujelev, R. Leveille, Planet Space Sci. 126, 24–33 (2016)

    Article  ADS  Google Scholar 

  27. Z.J. Chen, H.K. Li, M. Liu, R.H. Li, Spectroc. Acta Pt. B-Atom. Spectr. 63, 64–68 (2008)

    Article  ADS  Google Scholar 

  28. J. Kang, R. Li, Y. Wang, Y. Chen, Y. Yang, J. Anal. At. Spectrom. 32, 2292–2299 (2017)

    Article  Google Scholar 

  29. B.A. Gething, J.J. Janowiak, R.H. Falk, For. Prod. J. 59, 67–74 (2009)

    Google Scholar 

  30. D. L’Hermite, E. Vors, T. Vercouter, G. Moutiers. Environ. Sci. Pollut. Res. 23, 8219–8226 (2016)

    Article  Google Scholar 

  31. M.Z. Martin, N. Labbe, T.G. Rials, S.D. Wullschleger, Spectroc. Acta Pt. B At. Spectr. 60, 1179–1185 (2005)

    Article  ADS  Google Scholar 

  32. Q.Q. Wang, L.A. He, Y. Zhao, Z. Peng, L. Liu, Laser Phys. 26, 065605 (2016)

    Article  ADS  Google Scholar 

  33. J.L. Gottfried, F.C.D.L. Jr, C.A. Munson et al., Anal. Bioanal. Chem. 395(2), 283–300 (2009)

    Article  Google Scholar 

  34. L. He, Q.Q. Wang, Y. Zhao, L. Liu, Z. Peng, Plasma Sci. Technol. 18, 647–653 (2016)

    Article  ADS  Google Scholar 

  35. J.L. Gottfried, F.C.D.L. Jr, A.W. Miziolek, J. Anal. At. Spectrom. 24(24), 288–296 (2009)

    Article  Google Scholar 

  36. N. Charidingari, I. Barman, A.K. Myakalwar et al., Anal. Chem. 84(6), 2686–2694 (2012)

    Article  Google Scholar 

  37. J.L. Gottfried, F.C.D.L. Jr, C.A. Munson, A.W. Miziolek, J. Anal. At. Spectrom. 23, 205–216 (2008)

    Article  Google Scholar 

  38. J. Serrano, J. Moros, C. Sánchez et al., Anal. Chim. Acta 806, 107–116 (2014)

    Article  Google Scholar 

  39. S. Garcia, A. Fernandez, J. Luengo, F. Herrera, Soft Comput. 13, 959–977 (2009)

    Article  Google Scholar 

  40. N.L. Shchegoleva, G.A. Kukharev, Pattern recognition and image analysis. Adv. Math. Theory Appl. 20, 513–527 (2010)

    Google Scholar 

  41. E. Vors, K. Tchepidjian, J.-B. Sirven, Spectrochim. Acta Part B At. Spectrosc. 117, 16–22 (2016)

    Article  ADS  Google Scholar 

  42. M. Zeaiter, J.M. Roger, V. Bellon-Maurel, Chemometr. Intell. Lab. Syst. 80, 227–235 (2006)

    Article  Google Scholar 

  43. M. Zeaiter, J.M. Roger, V. Bellon-Maurel, TrAC Trends Anal. Chem. 24, 437–445 (2005)

    Article  Google Scholar 

  44. M. Zeaiter, J.M. Roger, V. Bellon-Maurel, D.N. Rutledge, TrAC Trends Anal. Chem. 23, 157–170 (2004)

    Article  Google Scholar 

  45. J.P. Castro, E.R. Pereirafilho. J. Anal. At. Spectrom. 31, 2005–2014 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported on the National Natural Science Foundation of China (NSFC) under Grant 61775017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianqian Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, X., Wang, Q., Zhao, Y. et al. Laser-induced breakdown spectroscopy (LIBS) for classification of wood species integrated with artificial neural network (ANN). Appl. Phys. B 125, 56 (2019). https://doi.org/10.1007/s00340-019-7166-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7166-3

Navigation