Skip to main content
Log in

Virtual wavefront calibration method based on ray tracing for alignment error compensation in the interferometric bearing ball measurement system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The accuracy of laser interferometry for measuring bearing balls is limited because it is challenging to realize null positioning of the ball being assessed. Even a slight alignment error causes the reflected wavefront to carry an uncertain aberration, which results in the surface error being obscured by the wavefront aberration. To effectively separate the surface error from the reflected wavefront, a virtual wavefront calibration method of ray tracing for alignment error compensation in the interferometric bearing ball measurement system is proposed. A virtual wavefront measurement model with variable alignment vector of the system is established based on the ray tracing principle and coordinate transform theory. According to the virtual wavefront, a calibration process is achieved in the virtual model with a known regularization and optimization method; as a result, no accurate adjustment mechanism is required to adjust the position of the bearing ball in the actual measurement system. Simulation and experiment results indicate that the proposed method is effective, and the repeatability of this measurement system is better than λ/40 peak–valley value. The final results may promote the application of this method in other fields of optical measurement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.W. Ng, Optical inspection of ball bearing defects. Meas. Sci. Technol. 18, N73–N76 (2007)

    Article  ADS  Google Scholar 

  2. J. Schmit, S. Han, E. Novak, Ball bearing measurement with white light interferometry. Proc. SPIE 7389, 73890P–73890P–73812 (2009)

    Article  ADS  Google Scholar 

  3. J.A. Lipa, G.J. Siddall, High precision measurement of gyro rotor sphericity. Precis. Eng. 2, 123–128 (1980)

    Article  Google Scholar 

  4. B. Kimbrough, J. Millerd, J. Wyant, J. Hayes, Low-coherence vibration insensitive Fizeau interferometer. Proc. SPIE 6292, 62920F (2006)

    Article  Google Scholar 

  5. M.V. Mantravadi, D. Malacara. In: D. Malacara Optical Shop Testing (eds) Newton, Fizeau, and Haidinger Interferometers, 3rd edn. (Wiley, Hoboken, 2007)

    Google Scholar 

  6. J. Peng, Y. Shen, K. Wang, D. Wang, Error impact analysis and experimental research for absolute testing of spherical surfaces. Infrar. Laser. Eng. 41, 1345–1350 (2012)

    Google Scholar 

  7. Y.-Y. Cheng, J.C. Wyant, Two-wavelength phase shifting interferometry. Appl. Opt. 23(24), 4539 (1984)

    Article  ADS  Google Scholar 

  8. D. Mo, R. Wang, G. Li, N. Wang, K. Zhang, Y. Wu, Double-sideband frequency scanning interferometry for long-distance dynamic absolute measurement. Appl. Phys. B-Lasers O 11, 123 (2017)

    Google Scholar 

  9. H. Wu, F. Zhang, T. Liu, P. Balling, X. Qu, Absolute distance measurement by multi-heterodyne interferometry using a frequency comb and a cavity-stabilized tunable laser. Appl. Opt. 55, 4210–4218 (2016)

    Article  ADS  Google Scholar 

  10. G. Baer, Automated surface positioning for a non-null test interferometer. Opt. Eng. 49, 095602 (2010)

    Article  ADS  Google Scholar 

  11. B. Li, B. Li, B. Liu, T. Jiang, An improved calibration method for structured light projection measurement system. Proc. SPIE 8791, 879116 (2013)

    Article  Google Scholar 

  12. E.D. Kim, M.S. Kang, S.C. Choi, Y.W. Choi, Reverse-optimization alignment algorithm using Zernike sensitivity. J. Opt. Soc. Korea 9, 68–73 (2005)

    Article  Google Scholar 

  13. L. Zhang, D. Liu, T. Shi, Y. Yang, Y. Shen, Practical and accurate method for aspheric misalignment aberrations calibration in non-null interferometric testing. Appl. Opt. 52, 8501–8511 (2013)

    Article  ADS  Google Scholar 

  14. X. Hou, F. Wu, L. Yang, Q. Chen, Experimental study on measurement of aspheric surface shape with complementary annular subaperture interferometric method. Opt. Exp. 15, 12890–12899 (2007)

    Article  ADS  Google Scholar 

  15. R. Kulkarni, P. Rastogi, Direct unwrapped phase estimation in phase shifting interferometry using Levenberg–Marquardt algorithm. J. Opt. 19, 015608 (2017)

    Article  ADS  Google Scholar 

  16. S.S. Lee, J.H. Kim, E.S. Choi, Phase shifting interferometry based on a vibration sensor—feasibility study on elimination of the depth degeneracy. J. Korean Phys. Soc. 70, 687–692 (2017)

    Article  ADS  Google Scholar 

  17. Y. Zhang, Z. Pang, X. Fan, Z. Ma, Q. Chen, L. Xiang, S. To, The computer-aided alignment study of three-mirror off-axis field bias optical system. Proc. SPIE 8417, 84170L (2012)

    Article  ADS  Google Scholar 

  18. J. Li, H. Shen, R. Zhu, Method of alignment error control in free-form surface metrology with the tilted-wave-interferometer. Opt. Eng. 55, 044101 (2016)

    Article  ADS  Google Scholar 

  19. W.A. Ramadan, H.H. Wahba, Simulated Fizeau ring fringes in transmission through spherical and plane reflected surfaces. Appl. Phys. B-Lasers O 1, 124 (2017)

    Google Scholar 

  20. Q. Hao, S. Wang, Y. Hu, H. Cheng, M. Chen, T. Li, Virtual interferometer calibration method of a non-null interferometer for freeform surface measurements. Appl. Opt. 55, 9992–10001 (2016)

    Article  ADS  Google Scholar 

  21. G. Baer, J. Schindler, C. Pruss, J. Siepmann, W. Osten, Calibration of a non-null test interferometer for the measurement of aspheres and free-form surfaces. Opt. Exp. 22, 31200 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant numbers 51635010, 51875447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, W., Liu, Z., Gu, S. et al. Virtual wavefront calibration method based on ray tracing for alignment error compensation in the interferometric bearing ball measurement system. Appl. Phys. B 125, 45 (2019). https://doi.org/10.1007/s00340-019-7156-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7156-5

Navigation