Skip to main content
Log in

Autler–Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate the single-photon excitation spectra of cesium Rydberg atoms by means of a Doppler-free purely all-optical detection with a room-temperature vapor cell and a 319 nm ultra-violet (UV) laser. We excite atoms directly from 6S1/2 ground state to 71P3/2 Rydberg state with a narrow-linewidth 319 nm UV laser. The detection of Rydberg states is performed by monitoring the absorption of an 852 nm probe beam in a V-type three-level system. With a strong coupling light, we observe the Autler–Townes doublet and investigate experimentally the dependence of the separation and linewidth on the coupling intensity, which is consistent with the prediction based on the dressed state theory. We further investigate the Rydberg spectra with an external magnetic field. The existence of non-degenerate Zeeman sub-levels results in the broadening and shift of the spectra. It has potential application in sensing magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M.O. Scully, M.S. Zubairy, Quantum Optics (Cambridge University Press, Cambridge, 1997)

    Book  Google Scholar 

  2. M. Saffman, T.G. Walker, K. Mølmer, Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2362 (2010)

    Article  ADS  Google Scholar 

  3. J.A. Sedlacek, A. Schwettmann, H. Kubler, J.P. Shaffer, Atom-based vector microwave electrometry using rubidium Rydberg atoms in a vapor cell. Phys. Rev. Lett. 111, 063001 (2013)

    Article  ADS  Google Scholar 

  4. S. Kumar, H. Fan, H. Kübler, A.J. Jahangiri, J.P. Shaffer, Rydberg-atom based radio-frequency electrometry using frequency modulation spectroscopy in room temperature vapor cells. Opt. Express 25, 8625–8637 (2017)

    Article  ADS  Google Scholar 

  5. I. Lesanovsky, Many-body spin interactions and the ground state of a dense Rydberg lattice gas. Phys. Rev. Lett. 106, 025301 (2011)

    Article  ADS  Google Scholar 

  6. M. Boninsegni, N.V. Prokof’ev, Colloquium: supersolids: what and where are they? Rev. Mod. Phys. 84, 759 (2012)

    Article  ADS  Google Scholar 

  7. A.W. Glaetzle, M. Dalmonte, R. Nath, C. Gross, I. Bloch, P. Zoller, Designing frustrated quantum magnets with laser-dressed Rydberg atoms. Phys. Rev. Lett. 114, 173002 (2015)

    Article  ADS  Google Scholar 

  8. L.I.R. Gil, R. Mukherjee, E.M. Bridge, M.P.A. Jones, T. Pohl, Spin squeezing in a Rydberg lattice clock. Phys. Rev. Lett. 112, 103601 (2014)

    Article  ADS  Google Scholar 

  9. J.E. Johnson, S.L. Rolston, Interactions between Rydberg-dressed atoms. Phys. Rev. A 82, 033412 (2010)

    Article  ADS  Google Scholar 

  10. Y.-Y. Jau, A.M. Hankin, T. Keating, I.H. Deutsch, G.W. Biedermann, Entangling atomic spins with a Rydberg-dressed spin-flip blockade. Nat. Phys. 12, 71–74 (2016)

    Article  Google Scholar 

  11. J. Zeiher, R. van Bijnen, P. Schauß, S. Hild, J. Choi, T. Pohl, I. Bloch, C. Gross, Many-body interferometry of a Rydberg-dressed spin lattice. Nat. Phys. 12, 1095–1099 (2016)

    Article  Google Scholar 

  12. J. Lee, M.J. Martin, Y.-Y. Jau, T. Keating, I.H. Deutsch, G.W. Biedermann, Demonstration of the Jaynes–Cummings ladder with Rydberg-dressed atoms. Phys. Rev. A 95, 041801(R) (2017)

    Article  ADS  Google Scholar 

  13. A. Arias, G. Lochead, S. Helmrich, S. Whitlock, Realization of a Rydberg-dressed atomic clock. arXiv:1810.04151v1 [physics.atom-ph]

  14. S.H. Autler, C.H. Townes, Stark effect in rapidly varying fields. Phys. Rev. 100, 703 (1955)

    Article  ADS  Google Scholar 

  15. D.A. Braje, V. Balić, S. Goda, G.Y. Yin, S.E. Harris, Frequency mixing using electromagnetically induced transparency in cold atoms. Phys. Rev. Lett. 93, 183601 (2004)

    Article  ADS  Google Scholar 

  16. L.V. Hau, S.E. Harris, Z. Dutton, C.H. Behroozi, Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999)

    Article  ADS  Google Scholar 

  17. U. Raitzsch, R. Heidemann, H. Weimer, B. Butscher, P. Kollmann, R. Löw, H.P. Büchler, T. Pfau, Investigation of dephasing rates in an interacting Rydberg gas. New J. Phys. 11, 055014 (2009)

    Article  ADS  Google Scholar 

  18. E.H. Ahmed, S. Ingram, T. Kirova, O. Salihoglu, J. Huennekens, J. Qi, Y. Guan, A.M. Lyyra, Quantum control of the spin-orbit interaction using the Autler-Townes effect. Phys. Rev. Lett. 107, 163601 (2011)

    Article  ADS  Google Scholar 

  19. A.D. Bounds, N.C. Jackson, R.K. Hanley, R. Faoro, E.M. Bridge, P. Huillery, M.P.A. Jones, Rydberg-dressed magneto-optical trap. Phys. Rev. Lett. 120, 183401 (2018)

    Article  ADS  Google Scholar 

  20. U.D. Rapol, V. Natarajan, Doppler-free spectroscopy in driven three-level systems. Eur. Phys. J. D 28, 317–322 (2004)

    Article  ADS  Google Scholar 

  21. Q.B. Liang, B.D. Yang, J.F. Yang, T.C. Zhang, J.M. Wang, Autler-Townes doublet in the absorption spectra for the transition between excited states of cold cesium atoms. Chin. Phys. B 19, 113207 (2010)

    Article  ADS  Google Scholar 

  22. B.K. Teo, D. Feldbaum, T. Cubel, J.R. Guest, P.R. Berman, G. Raithel, Autler–Townes spectroscopy of the 5S1/2-5P3/2-44D cascade of cold 85Rb atoms. Phys. Rev. A 68, 053407 (2003)

    Article  ADS  Google Scholar 

  23. H. Zhang, L.M. Wang, J. Chen, S.X. Bao, L.J. Zhang, J.M. Zhao, S.T. Jia, Autler–Townes splitting of a cascade system in ultracold cesium Rydberg atoms. Phys. Rev. A 87, 033835 (2013)

    Article  ADS  Google Scholar 

  24. P. Thoumany, T. Hänsch, G. Stania, L. Urbonas, T. Becker, Optical spectroscopy of rubidium Rydberg atoms with a 297 nm frequency-doubled dye laser. Opt. Lett. 34, 1621–1623 (2009)

    Article  ADS  Google Scholar 

  25. E. Urban, T.A. Johnson, T. Henage, L. Isenhower, D.D. Yavuz, T.G. Walker, M. Saffman, Observation of Rydberg blockade between two atoms. Nat. Phys. 5, 110–114 (2009)

    Article  Google Scholar 

  26. S.X. Bao, H. Zhang, J. Zhou, L.J. Zhang, J.M. Zhao, L.T. Xiao, S.T. Jia, Polarization spectra of Zeeman sublevels in Rydberg electromagnetically induced transparency. Phys. Rev. A 94, 043822 (2016)

    Article  ADS  Google Scholar 

  27. H. Cheng, H.M. Wang, S.S. Zhang, P.P. Xin, J. Luo, H.P. Liu, High resolution electromagnetically induced transparency spectroscopy of Rydberg 87Rb atom in a magnetic field. Opt. Express 25(26), 33575–33587 (2017)

    Article  ADS  Google Scholar 

  28. A.M. Hankin, Rydberg excitation of single atoms for applications in quantum information and metrology. Ph.D thesis, University of New Mexico (2014)

  29. J.Y. Wang, J.D. Bai, J. He, J.M. Wang, Development and characterization of a 2.2 W narrow-linewidth 318.6 nm ultraviolet laser. J. Opt. Soc. Am. B 33, 2020–2025 (2016)

    Article  ADS  Google Scholar 

  30. J.D. Bai, J.Y. Wang, J. He, J.M. Wang, Electronic sideband locking of a broadly tunable 318.6 nm ultraviolet laser to an ultrastable optical cavity. J. Opt. 19, 045501 (2017)

    Article  ADS  Google Scholar 

  31. C. Wieman, T.W. Hänch, Doppler-free laser polarization spectroscopy. Phys. Rev. Lett. 36, 1170–1173 (1976)

    Article  ADS  Google Scholar 

  32. D.A. Steck, Cesium D Line Data, 9–10 (2010). https://steck.us/alkalidata/cesiumnumbers.pdf

  33. G.S. Agarwal, Nature of the quantum interference in electromagnetic-field-induced control of absorption. Phys. Rev. A 55, 2467–2470 (1997)

    Article  ADS  Google Scholar 

  34. S. Menon, G.S. Agarwal, Gain components in the Autler–Townes doublet from quantum interferences in decay channels. Phys. Rev. A 61, 013807 (1999)

    Article  ADS  Google Scholar 

  35. T. Baluktsian, Rydberg interaction between thermal atoms: Van der Waals-type Rydberg–Rydberg interaction in a vapor cell experiment. Ph.D. thesis, University of Stuttgart (2013)

  36. A.K. Mohapatra, T.R. Jackson, C.S. Adams, Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett. 98, 113003 (2007)

    Article  ADS  Google Scholar 

  37. Y.C. Jiao, X.X. Han, Z.W. Yang, J.K. Li, G. Raithel, J.M. Zhao, S.T. Jia, Spectroscopy of cesium Rydberg atoms in strong radio-frequency fields. Phys. Rev. A 94, 023832 (2016)

    Article  ADS  Google Scholar 

  38. A. Sargsyan, G. Hakhumyan, C. Leroy, Y. Pashayan-Leroy, A. Papoyan, D. Sarkisyan, M. Auzinsh, Hyperfine Paschen–Back regime in alkali metal atoms: consistency of two theoretical considerations and experiment. J. Opt. Soc. Am. B 31, 1046–1053 (2014)

    Article  ADS  Google Scholar 

  39. S.X. Bao, W.G. Yang, H. Zhang, L.J. Zhang, J.M. Zhao, S.T. Jia, Splitting of an electromagnetically induced transparency window of a cascade system with 133Cs Rydberg atoms in a static magnetic field. J. Phys. Soc. Jpn. 84, 104301 (2015)

    Article  ADS  Google Scholar 

  40. L.J. Zhang, S.X. Bao, H. Zhang, G. Raithel, J.M. Zhao, L.T. Xiao, S.T. Jia, Nonlinear Zeeman effect, line shapes and optical pumping in electromagnetically induced transparency. arXiv:1702.04842v1 [physics.atom-ph]

  41. J.Y. Wang, J.D. Bai, J. He, J.M. Wang, Single-photon cesium Rydberg excitation spectroscopy using 318.6-nm UV laser and room-temperature vapor cell. Opt. Express 25, 22510–22518 (2017)

    Article  ADS  Google Scholar 

  42. J.D. Bai, S. Liu, J.Y. Wang, J. He, J.M. Wang, DC electric field sensing by using of 319 nm UV single-photon Rydberg excitation spectroscopy of cold cesium atoms. arXiv:1811.05092v1 [physics.atom-ph]

Download references

Acknowledgements

This project is supported by the National Key Research and Development Program of China (2017YFA0304502), the National Natural Science Foundation of China (61475091 and 11774210) and the Fund for Shanxi “1331 Project” Key Subjects Construction (1331KSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, J., Wang, J., Liu, S. et al. Autler–Townes doublet in single-photon Rydberg spectra of cesium atomic vapor with a 319 nm UV laser. Appl. Phys. B 125, 33 (2019). https://doi.org/10.1007/s00340-019-7151-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7151-x

Navigation