Skip to main content
Log in

A reduced ABC model for the carrier imbalance problem in GaN/InGaN quantum wells

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A reduction of the ABC model that deals with the carrier imbalance problem in GaN/InGaN quantum wells is proposed. It is shown that, after the definition of a proper effective carrier density, the band-to-band recombination rate can be expressed using only one probability coefficient, thus reducing the free parameters of the model with no loss of efficiency. On the contrary, the reduced model allows a more efficient description of the carrier density in the high current regime and expressing the carrier lifetime in a large range of current densities as \(\tau \propto 1/\sqrt J\). In addition, by checking experimental data available in the literature, we show that the reduced model allows a better match of the internal quantum efficiency droop curve vs current density as compared to the ABC model and equivalent to more sophisticated package-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Karpov, Opt. Quant. Electron. 47, 1293 (2015)

    Article  Google Scholar 

  2. T.P. Chen, C.L. Yao, C.Y. Wu, J.H. Yeh, C.W. Wang, M.H. Hsieh, Proc. SPIE 6910, 691005 (2008)

    Article  Google Scholar 

  3. H. Zhao, G. Liu, R.A. Arif, N. Tansu, Solid State Electron. 54, 1119 (2010)

    Article  ADS  Google Scholar 

  4. L. Wang, C. Lu, J. Lu, L. Liu, N. Liu, Y. Chen, Y. Zhang, E. Gu, X. Hu, Opt. Express 19, 14182 (2011)

    Article  ADS  Google Scholar 

  5. S. Hammersley, D. Watson-Parris, P. Dawson, M.J. Godfrey, T.J. Badcock, M.J. Kappers, C. McAleese, R.A. Oliver, C. Humpreys, J. Appl. Phys. 111, 083512 (2012)

    Article  ADS  Google Scholar 

  6. J. Xu, M.F. Schubert, A.N. Noemaun, D. Zhu, J.K. Kim, E.F. Schubert, M.H. Kim, H.J. Chung, S. Yoon, C. Sone, Y. Park. Appl. Phys. Lett. 94, 011113 (2009)

    Article  ADS  Google Scholar 

  7. C. Jia, T. Yu, H. Lu, C. Zhong, Y. Sun, Y. Tong, G. Zhang, Opt. Express 21, 8444 (2013)

    Article  ADS  Google Scholar 

  8. J. Iveland, L. Martinelli, J. Peretti, J.S. Speck, C. Weisbuch, Phys. Rev. Lett. 110, 177406 (2013)

    Article  ADS  Google Scholar 

  9. J. Piprek, F. Romer, B. Witzigmann, Appl. Phys. Lett. 106, 101101 (2015)

    Article  ADS  Google Scholar 

  10. M.V. Kisin, C.L. Chuang, H.S. El-Ghoroury, Semicond. Sci. Technol. 27, 024012 (2012)

    Article  ADS  Google Scholar 

  11. M.V. Kisin, C.L. Chuang, H.S. El-Ghoroury, J. Appl. Phys. 111, 103113 (2012)

    Article  ADS  Google Scholar 

  12. P. Kivisaari, J. Oksanen, J. Tulkki, J. App. Phys. 111, 103120 (2012)

    Article  ADS  Google Scholar 

  13. B. Galler, H.-J. Lugauer, M. Binder, R. Hollweck, Y. Folwill, A. Nirschl, A. Gomez-Iglesias, B. Hahn, J. Wagner, M. Sabathil, Appl. Phys. Express 6, 112101 (2013)

    Article  ADS  Google Scholar 

  14. H.Y. Ryu, H.S. Kim, J.I. Shim, Appl. Phys. Lett. 95, 081114 (2009)

    Article  ADS  Google Scholar 

  15. Q. Dai, Q. Shan, J. Cho, E.F. Schubert, M.H. Crawford, D.D. Koleske, M.H. Kim, Y. Park, Appl. Phys. Lett. 98, 033506 (2011)

    Article  ADS  Google Scholar 

  16. A. David, M.J. Grundmann, Appl. Phys. Lett. 96, 103504 (2010)

    Article  ADS  Google Scholar 

  17. Q. E.Kioupakis, D. Yan, Steiauf, C.G. Van, deWalle, New J. Phys. 15, 125006 (2013)

    Article  ADS  Google Scholar 

  18. E. Titkov, S.Y. Karpov, A. Yadav, V.L. Zerova, M. Zulonas, B. Galler, M. Strassburg, I. Pietzonka, H.J. Lugauer, E. U. Rafailov, IEEE JQE 50, 911 (2014)

    Article  Google Scholar 

  19. A. David, C. Hurni, N.G. Young, M.D. Craven, Appl. Phys. Lett. 110, 253504 (2017)

    Article  ADS  Google Scholar 

  20. D. Yevick, W. Streifer, Electron. Lett. 19, 1012 (1983)

    Article  Google Scholar 

  21. C. Jia, T. Yu, H. Lu, C. Zhang, Y. Sun, T. Tang, G. Zhang, Optic Express 21, 8444 (2013)

    Article  ADS  Google Scholar 

  22. M.A. Hopkins, D.W.E. Allsopp, M.J. Kappers, R.A. Oliver, C.J. Humphreys, J. Appl. Phys. 122, 234505 (2017)

    Article  ADS  Google Scholar 

  23. X. Bao, Y. Liu, G. Weng, X. Hu, S. Chen, Quantum Electron. 48, 7 (2018)

    Article  ADS  Google Scholar 

  24. G.M. Christian, S. Schulz, M.J. Kappers, C.J. Humphreys, R.A. Oliver, P. Dawson, Phys. Rev. B 98, 155301 (2018)

    Article  ADS  Google Scholar 

  25. P.G. Eliseev, M. Osin’ski, H. Li, Appl. Phys. Lett. 75, 3838 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Salis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salis, M., Ricci, P.C. & Carbonaro, C.M. A reduced ABC model for the carrier imbalance problem in GaN/InGaN quantum wells. Appl. Phys. B 125, 37 (2019). https://doi.org/10.1007/s00340-019-7150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7150-y

Navigation