Skip to main content
Log in

Ellipsoidal mirror dark-field scanning for detection of circulating tumor cells

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The detection of circulating tumor cells (CTCs) plays a very important role in the prevention and treatment of cancer. However, because of the low content of tumor cells in peripheral blood, these cells have always been difficult to detect. An efficient and accurate imaging method, the dark-field scanning imaging method, was innovatively proposed for the detection of CTCs in filtered and colored peripheral blood specimens. Here, the original dark-field scanning system was improved. By introducing an ellipsoidal mirror system, the noise in the sampling process is greatly reduced, and the sampling accuracy is significantly improved. Meanwhile, an automatic identification algorithm was developed to identify and screen CTCs in a large number of blood samples. Comparing with the other CTC detection methods, this method does not require a complex biological enrichment process, which may cause loss and destruction of CTCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Paterlinibrechot, N.L. Benali, Cancer Lett. 253, 180 (2007)

    Article  Google Scholar 

  2. M. Alunnifabbroni, M.T. Sandri, Methods 50, 289 (2010)

    Article  Google Scholar 

  3. S. Maheswaran, D.A. Haber, Curr. Opin. Genet. Dev. 20, 96 (2010)

    Article  Google Scholar 

  4. F. Tanaka, K.N. Yoneda, Clin. Cancer Res. 15, 6980 (2009)

    Article  Google Scholar 

  5. V. Hofman, M.I. Ilie, E. Long, E. Selva, C. Bonnetaud, T. Molina, N. Vénissac, J. Mouroux, P. Vielh, P. Hofman, Int. J. Cancer 129, 1651 (2011)

    Article  Google Scholar 

  6. M. LS Lim, M.C. Hu, W.C. Huang, A.T. Cheong, Gan, X.L. Looi et al., Lab Chip 12(21), 4388–4396 (2012)

    Article  Google Scholar 

  7. S. Carroll, M. Alrubeai, J. Immunol. Methods 296(1), 171 (2005)

    Article  Google Scholar 

  8. T.G. Ntouroupi, S.Q. Ashraf, S.B. McGregor, B.W. Turney, A. Seppo, Y. Kim, X. Wang, M.W. Kilpatrick, P. Tsipouras, T. Tafas, W.F. Bodmer, Br. J. Cancer 99, 789 (2008)

    Article  Google Scholar 

  9. H. Ben Hsieh, D. Marrinucci, K. Bethel, D.N. Curry, M. Humphrey, R.T. Krivacic, J. Kroener, L. Kroener, A. Ladanyi, N. Lazarus, P. Kuhn, R.H. Bruce, J. Nieva, Biosens. Bioelectron. 21(10), 1893 (2006)

    Article  Google Scholar 

  10. B. Fuchs, A. Romani, D. Freida, G. Medoro, M. Abonnenc, L. Altomare, I. Chartier, D. Guergour, C. Villiers, P.N. Marche, Lab Chip 6(1), 121 (2005)

    Article  Google Scholar 

  11. L. Wang, P. Balasubramanian, A. Chen, S. Kummar, Y.A. Evrard, R. Kinders, Semin. Oncol. 43(4), 464 (2016)

    Article  Google Scholar 

  12. K.C. Andree, G.V. Dalum, L.W.M.M. Terstappen, Mol. Oncol. 10(3), 395 (2016)

    Article  Google Scholar 

  13. J. Lorincik, D. Marton, R.L. King, J. Fine, J. Vac. Sc. Technol. B 14(4), 2417 (1996)

    Article  Google Scholar 

  14. D.D. Nolte, M. Zhao, X. Wang, J. Opt. Commun. 5(4), 456 (2009)

    Google Scholar 

  15. L. Peng, Diss. Abstr. Int. 66–10(B), 5471 (2005)

    Google Scholar 

  16. R. Königsberg, E. Obermayr, G. Bises, G. Pfeiler, M. Gneist, F. Wrba, M.D. Santis, R. Zeillinger, M. Hudec, C. Dittrich, Acta Oncol. 50, 700 (2011)

    Article  Google Scholar 

  17. M. Borgatti, N. Bianchi, I. Mancini, G. Feriotto, R. Gambari, Int. J. Mol. Med. 21(1), 3 (2008)

    Google Scholar 

  18. L. Zabaglo, M.G. Ormerod, M. Parton, A. Ring, I.E. Smith, M. Dowsett, Cytom. A 55A(2), 102–108 (2010)

    Article  Google Scholar 

  19. S.J. Hao, Y. Wan, Y.Q. Xia, X. Zou, S.Y. Zheng, Adv. Drug Deliv. Rev. 125, 3–20 (2018)

    Article  Google Scholar 

  20. H. Busch, Y. Daskal, F. Gyorkey, K. Smetana, Can. Res. 39(3), 857–863 (1979)

    Google Scholar 

  21. P.V. Asharani, G.L.K. Mun, M.P. Hande, S. Valiyaveettil, Arch. Toxicol. 85, 743 (2011)

    Article  Google Scholar 

  22. F. Vari, K. Bell, Electrophoresis 17, 20 (1996)

    Article  Google Scholar 

  23. M. Gong, Z. Zhou, J. Ma, IEEE Trans. Image Process. Publ. IEEE Signal Process. Soc. 21, 2141 (2012)

    Article  Google Scholar 

  24. A. Rodriguez, A. Laio, Science 344, 1492 (2014)

    Article  Google Scholar 

  25. Y.J. Cha, W. Choi, O. Büyüköztürk, Comput. Aided Civ. Infrastruct. Eng. 32, 361 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Project of Natural Science Foundation of Anhui Province of China (no. 1808085MF207). The fabrication work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Songpo Guo or Liang Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Xu, K., Qin, J. et al. Ellipsoidal mirror dark-field scanning for detection of circulating tumor cells. Appl. Phys. B 125, 38 (2019). https://doi.org/10.1007/s00340-019-7143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7143-x

Navigation