Interferometric visualization of crack growth in glass plate

Abstract

We present a potential tool to monitor growth of a crack in a glass plate using interferometry, where fringes characteristic of optical dislocations can be seen. It is experimentally observed that interference fringes can be used to visualize the stress field that is activated near the tip of a crack. In an interferometric setup, an optical wave-front is transmitted through the crack site of glass plate which results in a local phase jump in the test beam. This phase jump reveals itself in the fringe pattern in the form of fork fringes, where branching of fringes is seen at the crack tip and along the crack line. Using the Fourier transform fringe analysis method and phase-unwrapping method, we optically track the crack tip. The positions of fork fringes provide the location and trajectory of crack tip.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    E.E. Gdoutos, Fracture Mechanics Criteria and Application (Kluwer Academic Publishers, Dordrecht, 1990)

    Google Scholar 

  2. 2.

    R.G. Forman, V.E. Kearney, R. Engle, Numerical analysis of crack propagation in cyclic loaded structures. J. Basic Eng. 89, 459–464 (1967)

    Article  Google Scholar 

  3. 3.

    D.A. Hills, P.A. Kelly, D.N. Dai, A.M. Korsunsky, Solution of Crack Problems: The Distributed Dislocation Techniques (Kluwer Academic Publishers, Dordrecht, 1996)

    Google Scholar 

  4. 4.

    G.I. Barenblatt, The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)

    MathSciNet  Article  Google Scholar 

  5. 5.

    H.L. Ewalds, R.J.H. Wanhill, Fracture Mechanics (Delftse Uitgevers Maatschappij, Delft, 1989)

    Google Scholar 

  6. 6.

    G.P. Cherepanov, Mechanics of Brittle Fracture (MacGraw Hill, New York, 1979)

    Google Scholar 

  7. 7.

    L.B. Freund, Dynamic Fracture Mechanics (Cambridge University Press, Cambridge, 1990)

    Google Scholar 

  8. 8.

    S. Henaux, F. Creuzet, Crack tip morphology of slowly growing cracks in glass. J. Am. Ceram. Soc. 83, 415–417 (2000)

    Article  Google Scholar 

  9. 9.

    B. Freedman, G. Bartal, M. Segev, R. Lifshitz, D.N. Christodoulides, J.W. Fleischer, Wave and defect dynamics in nonlinear photonic Quasi crystals. Nature 440, 1166–1169 (2006)

    ADS  Article  Google Scholar 

  10. 10.

    H.M. Westergaard, Bearing pressure and cracks. J. Appl. Mech. 6, 49–53 (1939)

    Google Scholar 

  11. 11.

    D.S. Dugdale, C. Ruiz, Elasticity for Engineers (McGraw-Hill, New York, 1971)

    Google Scholar 

  12. 12.

    D.S. Dugdale, Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    ADS  Article  Google Scholar 

  13. 13.

    B.A. Bilby, A.H. Cottrell, K.H. Swinden, The spread of plastic yield from a notch. Proc. R. Soc. Lond. A 272, 304–314 (1963)

    ADS  Article  Google Scholar 

  14. 14.

    C. Atkinson, M.F. Kanninen, A simple representation of crack tip plasticity: the inclined strip yield superdislocation model. Int. J. Fracture 13, 151–163 (1977)

    Article  Google Scholar 

  15. 15.

    M.F. Kanninen, C. Atkinson, C.E. Feddersen, A fatigue crack growth analysis method based on a simple representation of crack tip plasticity. Am. Soc. Test Mat. STP 637, 122–140 (1977)

    Google Scholar 

  16. 16.

    I. Basistiy, M. Soskin, M. Vasnetsov, Optical wavefront dislocations and their properties. Opt. Commun. 119, 604–612 (1995)

    ADS  Article  Google Scholar 

  17. 17.

    A.G. White, C.P. Smith, N.R. Heckenberg, H. Rubinsztein-Dunlop, R. Mcduff, C.O. Weiss, C. Tamm, Interferometric measurements of phase singularities in the output of a visible laser. J. Mod. Opt. 38, 2531–2541 (1991)

    ADS  Article  Google Scholar 

  18. 18.

    D.P. Ghai, S. Vyas, P. Senthilkumaran, R.S. Sirohi, Detection of phase singularity using a lateral shear interferometer. Opt. Laser Eng. 46, 419–423 (2008)

    Article  Google Scholar 

  19. 19.

    J. Nye, M. Berry, Dislocations in wave trains. Proc. R. Soc. Lond. A Math Phys. Sci. 336, 165–190 (1974)

    ADS  MathSciNet  Article  Google Scholar 

  20. 20.

    P. Senthilkumaran, Singularities in Physics and Engineering—Properties, Methods, and Applications (IOP Publishing, Bristol, 2018)

    Google Scholar 

  21. 21.

    M. Beijersbergen, R. Coerwinkel, M. Kristensen, J. Woerdman, Helical wavefront laser beams produced with a spiral phase plate. Opt. Commun. 112, 321–327 (1994)

    ADS  Article  Google Scholar 

  22. 22.

    D.P. Ghai, P. Senthilkumaran, R. Sirohi, Adaptive helical mirror for generation of optical phase singularity. Appl. Opt. 47, 1378–1383 (2008)

    ADS  Article  Google Scholar 

  23. 23.

    Y. Izdebskaya, V. Shvedov, A. Volyar, Generation of higher order optical vortices by a dielectric wedge. Opt. Lett. 30, 2472–2474 (2005)

    ADS  Article  Google Scholar 

  24. 24.

    S. Vyas, P. Senthilkumaran, Vortices from wavefront tilts. Opt. Lasers Eng. 48, 834–840 (2010)

    Article  Google Scholar 

  25. 25.

    S. Vyas, P. Senthilkumaran, Two dimensional vortex lattices from pure wavefront tilts. Opt. Commun. 283, 2767–2771 (2010)

    ADS  Article  Google Scholar 

  26. 26.

    G.R. Irwin, in Fracture Encyclopedia of Physics, Handbuch der Physic, ed. by Vol V.I. Flugge (Springer Verlag, Berlin, 1958), pp. 551–590

    Google Scholar 

  27. 27.

    C. Rotschild, S. Zommer, S. Moed, O. Hershcovitz, S.G. Lipson, Adjustable spiral phase plate. Appl. Opt. 43, 2397–2399 (2004)

    ADS  Article  Google Scholar 

  28. 28.

    B.K. Singh, D.S. Mehta, P. Senthilkumaran, Generation of vortices using cracked glass plate, in Proceedings of the International Conference on Fiber Optics and Photonics©OSA wp0.6, 2012

  29. 29.

    M. Takeda, H. Ina, S. Kobayashi, Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry. JOSA 72, 156–160 (1982)

    ADS  Article  Google Scholar 

  30. 30.

    T. Ishida, K. Kakushima, T. Mizoguchi, H. Fujita, Role of dislocation movement in the electrical conductance of nanocontacts. Sci. Rep. 2, 1–5 (2012)

    Article  Google Scholar 

  31. 31.

    R.M. Goldstein, H.A. Zebken, C.L. Werner, Satellite radar interferometry: two-dimensional phase unwrapping. Radio Sci. 23, 713–720 (1988)

    ADS  Article  Google Scholar 

  32. 32.

    D.C. Ghiglia, M.D. Pritt, Two-Dimensional Phase Unwrapping: Theory, Algorithms and Software (Wiley Inter-science, New York, 1998)

    Google Scholar 

  33. 33.

    B.K. Singh, M. Bahl, D.S. Mehta, P. Senthilkumaran, Study of internal energy flows in dipole vortex beams by knife edge test. Opt. Commun. 293, 15–21 (2013)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

We thank the University Grant Commission (UGC) of India for the financial support [Grant No. F.30-356/2017 (BSR)].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Brijesh Kumar Singh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 5514 KB)

Supplementary material 1 (MP4 5514 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Singh, B.K., Mehta, D.S. & Senthilkumaran, P. Interferometric visualization of crack growth in glass plate. Appl. Phys. B 125, 21 (2019). https://doi.org/10.1007/s00340-019-7131-1

Download citation