Skip to main content
Log in

Single-mode scannable nanosecond Ti:sapphire laser for high-resolution two-photon absorption laser-induced fluorescence (TALIF)

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A pulsed Ti:sapphire laser has been developed so as to operate over a wide range of frequencies, even far from the optimum wavelength (790 nm), as a narrow-band light source for TALIF experiments on O, Cl, N and H. The coupling of the optical cavity, both to its injection seeder and to the laser output beam, relies on a reflecting plate, which makes it fundamentally easier to control the coupling coefficient over a wider spectral range than with an ordinary transmission coupler. Two intra-cavity prisms are used to bring the green pumping light longitudinally coincident with the cavity axis, inside the Ti:sapphire crystal. Seeding by a CW Ti:sapphire laser has made it possible to obtain single-mode emission over the whole range of tunability, thanks to the spectral selection of the prisms and to a specifically developed digital/analog controller. Experiments carried out with the system on oxygen atoms inside an oxygen plasma show that the experimental bandwidth is limited essentially by the collisional dephasing rate and the finite pulse duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P.F. Moulton, J. Opt. Soc. Am. B 3, 125–133 (1986)

    Article  ADS  Google Scholar 

  2. S. Hannemann, E.-J. van Duijn, W. Ubachs, Rev. Sci. Inst. 78, 103102 (2007)

    Article  ADS  Google Scholar 

  3. P. Brockman, C.H. Bair, J.C. Barnes, R.V. Hess, E.V. Browell, Opt. Lett. 11, 712–714 (1986)

    Article  ADS  Google Scholar 

  4. G.A. Rines, P.F. Moulton, Opt. Lett. 15, 434–436 (1990)

    Article  ADS  Google Scholar 

  5. T.D. Raymond, Smith, Opt. Lett. 16, 33–35 (1991)

    Article  ADS  Google Scholar 

  6. K. Ertel, H. Linné, J. Bösenberg, Appl. Opt. 44, 5120–5126 (2005)

    Article  ADS  Google Scholar 

  7. L. Cabaret, C. Drag, Eur. Phys. J. Appl. Phys. 51, 20702 (2010)

    Article  Google Scholar 

  8. T.R. Steele, D.C. Gerstenberger, A. Drobshoff, R.W. Wallace, Opt. Lett. 16, 399–401 (1991)

    Article  ADS  Google Scholar 

  9. D.V. Guerra, D.B. Coyle, D.J. Krebs, Measure. Sci. Technol. 5, 1306–1308 (1994)

    Article  ADS  Google Scholar 

  10. J.C. Barnes, N.P. Barnes, L.G. Wang, W. Edwards, IEEE J. Quant. Elec. 29, 2684–2692 (1993)

    Article  ADS  Google Scholar 

  11. K.A. Elsayed, R.J. DeYoung, L.B. Petway, W.C. Edwards, J.C. Barnes, H.E. Elsayed-Ali, Appl. Opt. 42, 6650–6660 (2003)

    Article  ADS  Google Scholar 

  12. G. Wagner, A. Behrendt, V. Wulfmeyer, F. Späth, M. Schiller, Appl. Opt. 52, 2454–2469 (2013)

    Article  ADS  Google Scholar 

  13. S. Hannemann, E.J. Salumbides, S. Witte, R.T. Zinkstok, E.-J. van Duijn, K.S.E. Eikema, W. Ubachs, Phys. Rev. A 74, 062514 (2006)

    Article  ADS  Google Scholar 

  14. C.F. Cheng et al., Phys. Rev. Lett. 121, 013001 (2018)

    Article  ADS  Google Scholar 

  15. M. Hori, A. Dax, Opt. Lett. 34, 1273–1275 (2009)

    Article  ADS  Google Scholar 

  16. V. Sonnenschein, I.D. Moore, S. Raeder, M. Reponen, H. Tomita, K. Wendt, Laser Phys. 27, 085701 (2017)

    Article  ADS  Google Scholar 

  17. G. Gabrielse et al., Opt. Lett. 43, 2905–2907 (2018)

    Article  ADS  Google Scholar 

  18. J. Bittner, K. Kohse-Höinghaus, U. Meier, T. Just, Chem. Phys. Lett. 143, 571–576 (1988)

    Article  ADS  Google Scholar 

  19. U. Czarnetzki, K. Miyazaki, T. Kajiwara, K. Muraoka, M. Maeda, H.F. Döbele, J. Opt. Soc. Am. B 11, 2155–2162 (1994)

    Article  ADS  Google Scholar 

  20. D.J. Bamford, L.E. Jusinski, W.K. Bischel, Phys. Rev. A 34, 185–198 (1986)

    Article  ADS  Google Scholar 

  21. W.K. Bischel, B.E. Perry, D.R. Crosley, Appl. Opt. 21, 1419–1429 (1982)

    Article  ADS  Google Scholar 

  22. S. Mazouffre, C. Foissac, P. Supiot, P. Vankan, R. Engeln, D.C. Schram, N. Sadeghi, Plasma Sources Sci. Technol. 10, 168–175 (2001)

    Article  ADS  Google Scholar 

  23. M. Heaven, T.A. Miller, R.R. Freeman, J.C. White, J. Bokor, Chem. Phys. Lett 86, 458–462 (1982)

    Article  ADS  Google Scholar 

  24. A. Goehlich, T. Kawetzki, H.F. Döbele, J. Chem. Phys. 108, 9362–9370 (1998)

    Article  ADS  Google Scholar 

  25. K. Niemi, V. Schulz-von der Gathen, H.F. Döbele, J. Phys. D Appl. Phys. 34, 2330–2335 (2001)

    Article  ADS  Google Scholar 

  26. K. Niemi, V. Schulz-Von Der Gathen, H.F. Döbele, Plasma Sources Sci. Technol. 14, 375–386 (2005)

    Article  ADS  Google Scholar 

  27. I.T. Mc Kinnie, A.L.L. Oien, D.M. Warrington, P.N. Tonga, L.A.W. Gloster, T.A. King, IEEE J. Quant. Elec 33, 1221–1230 (1997)

    Article  ADS  Google Scholar 

  28. F. Salin, J. Squier, Opt. Lett. 17, 1352–1354 (1992)

    Article  ADS  Google Scholar 

  29. G. Wagner, V. Wulfmeyer, A. Behrendt, Appl. Opt. 50, 5921–5937 (2011)

    Article  ADS  Google Scholar 

  30. J. Yao, Y. Wang, Nonlinear Optics and Solid-State Lasers (Springer-Verlag, Berlin Heidelberg, 2012)

    Book  Google Scholar 

  31. J.M. Eggleston, L.G. DeHazer, K.W. Kangas, IEEE J. Quant. Elec. 21, 1582–1595 (1985)

    Article  Google Scholar 

  32. A. Ogino, M. Katsuragawa, K. Hakuta, Jpn. J. Appl. Phys. 36, 5112–5115 (1997)

    Article  ADS  Google Scholar 

  33. A. Kasapi, G.Y. Yin, M. Jain, Appl. Opt. 35, 1999–2004 (1999)

    Article  ADS  Google Scholar 

  34. M.S. Bowers, S.E. Moody, J. Opt. Soc. Am. B 11, 2266–2275 (1994)

    Article  ADS  Google Scholar 

  35. P.F. Moulton, IEEE J. Quant. Elec. 21, 1582–1595 (1985)

    Article  ADS  Google Scholar 

  36. W. Koechner, Solid-State Laser Engineering (Springer, New York, 2013)

    MATH  Google Scholar 

  37. J.J. Degnan, IEEE J. Quant. Elec. 25, 214–220 (1989)

    Article  ADS  Google Scholar 

  38. M.S. Fee, K. Danzmann, S. Chu, Phys. Rev. A 45, 4911–4922 (1992)

    Article  ADS  Google Scholar 

  39. J.-P. Booth, D. Marinov, M. Foucher, O. Guaitella, D. Bresteau, L. Cabaret, C. Drag, J. Instrum. 10, C11003 (2015)

    Article  Google Scholar 

  40. D. Marinov, C. Drag, C. Blondel, O. Guaitella, J. Golda, B. Klarenaar, R. Engeln, V. von der Schulz- Gathen, J.-P. Booth, Plasma Sources Sci. Technol. 25, 06LT03 (2016)

    Article  Google Scholar 

  41. D. Marinov, J.-P. Booth, C. Drag, C. Blondel, J. Phys. B: At. Mol. Opt. Phys. 50, 065003 (2017)

    Article  ADS  Google Scholar 

  42. T.B. Settersten, M.A. Linne, J. Opt. Soc. Am. B 19, 954–964 (2002)

    Article  ADS  Google Scholar 

  43. F. Biraben, B. Cagnac, G. Grynberg, Phys. Rev. Lett. 32, 643–645 (1974)

    Article  ADS  Google Scholar 

  44. F. Biraben, M. Bassini, B. Cagnac, J. Phys. Paris 40, 445–455 (1979)

    Article  Google Scholar 

  45. M. Hemmer, Y. Joly, L. Globov, M. Bass, M. Richardson, Opt. Express 17, 8212–8219 (2009)

    Article  ADS  Google Scholar 

  46. N. Sirse, J.-P. Booth, P. Chabert, A. Surzhykov, P. Indelicato, J. Phys. D: Appl. Phys. 46, 295203 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported by ’Laboratoire d’Excellence Physics Atom Light Matter’—LabEx PALM (SIP) part of ANR Investissements d’Avenir (ANR-10-LABX-0039-PALM). The authors would like to thank J.-P. Booth, A. Chatterjee, O. Guaitella and A.-S. Morillo-Candas (Laboratoire de Physique des Plasmas) for plasma operation and T. L. Chng (Laboratoire de Physique des Plasmas) for constructive criticism of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Drag.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lottigier, P., Jucha, A., Cabaret, L. et al. Single-mode scannable nanosecond Ti:sapphire laser for high-resolution two-photon absorption laser-induced fluorescence (TALIF). Appl. Phys. B 125, 14 (2019). https://doi.org/10.1007/s00340-018-7124-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7124-5

Navigation