Skip to main content
Log in

Measurement and extrapolation modeling of PAH laser-induced fluorescence spectra at elevated temperatures

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The laser-induced fluorescence technique is widely used in the measurement of polycyclic aromatic hydrocarbons (PAHs) in sooting flames. One of the main limitations is the absence of the PAH fluorescence spectra at elevated temperatures. In this study, fluorescence spectra and photophysical properties of five typical PAHs were experimentally studied in the temperature range of 673–1373 K in an optical cell. The experimental results indicated that the fluorescence spectra of PAHs were greatly sensitive to PAH structures and were likely to shift to the red and became broader as temperature increases. Further, we also observed that absorption cross sections of PAHs increased linearly as a function of temperature. Fluorescence quantum yields, which were calculated using integral fluorescence intensities and absorption cross sections, decreased monotonically with increasing temperature. However, the descent gradients of different PAHs were quite different, e.g., naphthalene, fluoranthene and fluorene were more sensitive to temperature, and their fluorescence production was much lower at elevated temperature compared with phenanthrene and pyrene. In order to investigate the fluorescence quantum yields at higher temperatures (up to 2000 K), which cannot be measured in the optical cell, a multistep decay model was established and optimized based on experimental results. At temperatures between 1373 and 2000 K, the extrapolation results indicated that fluorescence quantum yields of phenanthrene and pyrene would be two orders of magnitude higher than those of naphthalene, fluorene and fluoranthene. This contributed to explaining that the PAH fluorescence signals emitted from phenanthrene and pyrene were stronger than those emitted from naphthalene in flames, although the concentrations of phenanthrene and pyrene were much lower than that of naphthalene in flames.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.L. Friedman, Y. Zhang, N.E. Selin, Climate change and emissions impacts on atmospheric PAH transport to the Arctic. Environ. Sci. Technol. 48, 429–437 (2014)

    Article  ADS  Google Scholar 

  2. B. Maliszewska-Kordybach, Sources, concentrations, fate and effects of polycyclic aromatic hydrocarbons (PAHs) in the environment. Part A: PAHs in air. Pol. J. Environ. Stud. 8, 131–136 (1999)

    Google Scholar 

  3. S. Mayoralasalises, S. Diazlobato, Air pollution and lung cancer. Curr. Respir. Med. Rev. 8, 982–983 (2012)

    Google Scholar 

  4. M.M. Mumtaz, J.D. George, K.W. Gold, W. Cibulas, C.T. Derosa, ATSDR evaluation of health effects of chemicals. IV. Polycyclic aromatic hydrocarbons (PAHs): understanding a complex problem. Toxicol. Ind. Health 12, 742 (1996)

    Article  Google Scholar 

  5. F.P. Perera, Environment and cancer: who are susceptible? Science 278, 1068 (1997)

    Article  ADS  Google Scholar 

  6. J.L. Durant, B.W. Jr, A.L. Lafleur, B.W. Penman, C.L. Crespi, Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutat. Res. 371, 123 (1996)

    Article  Google Scholar 

  7. J.A. Miller, M.J. Pilling, J. Troe, Unravelling combustion mechanisms through a quantitative understanding of elementary reactions. Proc. Combust. Inst. 30, 43–88 (2005)

    Article  Google Scholar 

  8. J.L. Consalvi, F. Liu, J. Contreras, M. Kashif, G. Legros, S. Shuai, J. Wang, Numerical study of soot formation in laminar coflow diffusion flames of methane doped with primary reference fuels. Combust. Flame 162, 1153–1163 (2015)

    Article  Google Scholar 

  9. A.T. Wijayanta, M.S. Alam, K. Nakaso, J. Fukai, Numerical investigation on combustion of coal volatiles under various O2/CO2 mixtures using a detailed mechanism with soot formation. Fuel 93, 670–676 (2012)

    Article  Google Scholar 

  10. G. Jia, M. Yao, H. Liu, P. Zhang, B. Chen, L. Wei, PAHs formation simulation in the premixed laminar flames of TRF with alcohol addition using a semi-detailed combustion mechanism. Fuel 155, 44–54 (2015)

    Article  Google Scholar 

  11. H. Richter, J.B. Howard, Formation of polycyclic aromatic hydrocarbons and their growth to soot-a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26, 565–608 (2000)

    Article  Google Scholar 

  12. Q. Feng, A. Jalali, A.M. Fincham, Y.L. Wang, T.T. Tsotsis, F.N. Egolfopoulos, Soot formation in flames of model biodiesel fuels. Combust. Flame 159, 1876–1893 (2012)

    Article  Google Scholar 

  13. F. Bisetti, G. Blanquart, M.E. Mueller, H. Pitsch, On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159, 317–335 (2012)

    Article  Google Scholar 

  14. F. Liu, X. He, X. Ma, Q. Zhang, M.J. Thomson, H. Guo, G.J. Smallwood, S. Shuai, J. Wang, An experimental and numerical study of the effects of dimethyl ether addition to fuel on polycyclic aromatic hydrocarbon and soot formation in laminar coflow ethylene/air diffusion flames. Combust. Flame 158, 547–563 (2011)

    Article  Google Scholar 

  15. S.S. Yoon, S.M. Lee, S.H. Chung, Effect of mixing methane, ethane, propane, and propene on the synergistic effect of PAH and soot formation in ethylene-base counterflow diffusion flames. Proc. Combust. Inst. 30, 1417–1424 (2005)

    Article  Google Scholar 

  16. M. Frenklach, Reaction mechanism of soot formation in flames. Phys. Chem. Chem. Phys. 4, 2028–2037 (2002)

    Article  Google Scholar 

  17. C. Saggese, S. Ferrario, J. Camacho, A. Cuoci, A. Frassoldati, E. Ranzi, H. Wang, T. Faravelli, Kinetic modeling of particle size distribution of soot in a premixed burner-stabilized stagnation ethylene flame. Combust. Flame 162, 3356–3369 (2015)

    Article  Google Scholar 

  18. P. Desgroux, X. Mercier, K.A. Thomson, Study of the formation of soot and its precursors in flames using optical diagnostics. Proc. Combust. Inst. 34, 1713–1738 (2013)

    Article  Google Scholar 

  19. X. Mercier, A. Faccinetto, P. Desgroux, Laser Diagnostics for Selective and Quantitative Measurement of PAHs and Soot (Springer, London, 2013)

    Book  Google Scholar 

  20. W. Karcher, R. Fordham, J. Dubois, P. Glaude, J. Ligthart, Spectral Atlas of Polycyclic Aromatic Compounds (1985)

  21. Z. Chi, B.M. Cullum, D.L. Stokes, J. Mobley, G.H. Miller, M.R. Hajaligol, T. Vo-Dinh, Laser-induced fluorescence studies of polycyclic aromatic hydrocarbons (PAH) vapors at high temperatures. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 57, 1377–1384 (2001)

    Article  ADS  Google Scholar 

  22. Z. Chi, B.M. Cullum, D.L. Stokes, J. Mobley, G.H. Miller, M.R. Hajaligol, T. Vo-Dinh, High-temperature vapor detection of polycyclic aromatic hydrocarbon fluorescence. Fuel 80, 1819–1824 (2001)

    Article  Google Scholar 

  23. S. Bejaoui, R. Lemaire, E. Therssen, Analysis of laser-induced fluorescence spectra obtained in spray flames of diesel and rapeseed methyl ester using the multiple-excitation wavelength laser-induced incandescence technique with IR, UV, and visible excitations. Combust. Sci. Technol. 187, 906–924 (2015)

    Article  Google Scholar 

  24. A. Ciajolo, R. Ragucci, B. Apicella, R. Barbella, J.M. De, A. Tregrossi, Fluorescence spectroscopy of aromatic species produced in rich premixed ethylene flames. Chemosphere 42, 835 (2001)

    Article  ADS  Google Scholar 

  25. S. Bejaoui, X. Mercier, P. Desgroux, E. Therssen, Laser induced fluorescence spectroscopy of aromatic species produced in atmospheric sooting flames using UV and visible excitation wavelengths. Combust. Flame 161, 2479–2491 (2014)

    Article  Google Scholar 

  26. M. Sirignano, A. Collina, M. Commodo, P. Minutolo, A. D’Anna, Detection of aromatic hydrocarbons and incipient particles in an opposed-flow flame of ethylene by spectral and time-resolved laser induced emission spectroscopy. Combust. Flame 159, 1663–1669 (2012)

    Article  Google Scholar 

  27. S.M. Lee, S.S. Yoon, S.H. Chung, Synergistic effect on soot formation in counterflow diffusion flames of ethylene–propane mixtures with benzene addition. Combust. Flame 136, 493–500 (2004)

    Article  Google Scholar 

  28. Y. Zhang, L. Wang, P. Liu, B. Guan, H. Ni, Z. Huang, H. Lin, Experimental and kinetic study of the effects of CO2 and H2O addition on PAH formation in laminar premixed C2H4/O2/Ar flames. Combust. Flame 192, 439–451 (2018)

    Article  Google Scholar 

  29. P. Liu, Y. Zhang, L. Wang, B. Tian, B. Guan, D. Han, Z. Huang, H. Lin, The chemical mechanism of exhaust gas recirculation on polycyclic aromatic hydrocarbons formation based on LIF measurement. Energy Fuels 32(6), 7112–7124 (2018)

    Article  Google Scholar 

  30. P. Liu, Z. He, G.L. Hou, B. Guan, H. Lin, Z. Huang, The diagnostics of laser-induced fluorescence (LIF) spectra of PAHs in flame with TD-DFT: special focus on five-membered ring. J. Phys. Chem. A 119, 13009 (2015)

    Article  Google Scholar 

  31. B.C. Choi, S.K. Choi, S.H. Chung, Soot formation characteristics of gasoline surrogate fuels in counterflow diffusion flames. Proc Combust Inst 33, 609–616 (2011)

    Article  Google Scholar 

  32. S.K. Choi, B.C. Choi, S.M. Lee, J.H. Choi, The effect of liquid fuel doping on PAH and soot formation in counterflow ethylene diffusion flames. Exp. Therm. Fluid Sci. 60, 123–131 (2015)

    Article  Google Scholar 

  33. L.E. Brady, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic Press, New York, 1971)

    Google Scholar 

  34. J.H. Richardson, M.E. Ando, Sub-part-per-trillion detection of polycyclic aromatic hydrocarbons by laser induced molecular fluorescence. Anal. Chem. 49, 955–959 (1977)

    Article  Google Scholar 

  35. B. Apicella, A. Ciajolo, A. Tregrossi, Fluorescence spectroscopy of complex aromatic mixtures. Anal. Chem. 76, 2138 (2004)

    Article  Google Scholar 

  36. F.M. Behlen, D.B. Mcdonald, V. Sethuraman, S.A. Rice, Fluorescence spectroscopy of cold and warm naphthalene molecules: some new vibrational assignments. Cheminform 13, 5685–5693 (1982)

    Google Scholar 

  37. A. Nakajima, Solvent effect on the vibrational structures of the fluorescence and absorption spectra of pyrene. J. Catal. 44, 3272–3277 (2006)

    Google Scholar 

  38. F.P. Schwarz, S.P. Wasik, Fluorescence measurements of benzene, naphthalene, anthracene, pyrene, fluoranthene, and benzo(e)pyrene in water. Anal. Chem. 48, 524–528 (1976)

    Article  Google Scholar 

  39. F. Ossler, T. Metz, M. Aldén, Picosecond laser-induced fluorescence from gas-phase polycyclic aromatic hydrocarbons at elevated temperatures. I. Cell measurements. Appl. Phys. B 72, 465–478 (2001)

    Article  ADS  Google Scholar 

  40. M.J. Castaldi, N.M. Marinov, C.F. Melius, J. Huang, S.M. Senkan, W.J. Pit, C.K. Westbrook, Experimental and modeling investigation of aromatic and polycyclic aromatic hydrocarbon formation in a premixed ethylene flame. Symp. Combust. 26, 693–702 (1996)

    Article  Google Scholar 

  41. Y. Wang, A. Raj, S.H. Chung, Soot modeling of counterflow diffusion flames of ethylene-based binary mixture fuels. Combust. Flame 162, 586–596 (2014)

    Article  Google Scholar 

  42. M. Kühni, C. Morin, P. Guibert, Fluoranthene laser-induced fluorescence at elevated temperatures and pressures: implications for temperature-imaging diagnostics. Appl. Phys. B 102, 659–671 (2011)

    Article  ADS  Google Scholar 

  43. M. Orain, P. Baranger, C. Ledier, J. Apeloig, F. Grisch, Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements. Appl. Phys. B 116, 729–745 (2014)

    Article  ADS  Google Scholar 

  44. P. Klán, J. Wirz, Photochemistry of organic compounds: from concepts to practice. Energy Build. 35, 933–940 (2009)

    Google Scholar 

  45. C. Schulz, V. Sick, Tracer-LIF diagnostics: quantitative measurement of fuel concentration, temperature and fuel/air ratio in practical combustion systems. Prog. Energy Combust. Sci. 31, 75–121 (2005)

    Article  Google Scholar 

  46. B.H. Cheung, R.K. Hanson, 3-pentanone fluorescence yield measurements and modeling at elevated temperatures and pressures. Appl. Phys. B 106, 755–768 (2012)

    Article  ADS  Google Scholar 

  47. M.C. Thurber, F. Grisch, B.J. Kirby, M. Votsmeier, R.K. Hanson, Measurements and modeling of acetone laser-induced fluorescence with implications for temperature-imaging diagnostics. Appl. Opt. 37, 4963–4978 (1998)

    Article  ADS  Google Scholar 

  48. J. Koch, Fuel tracer photophysics for quantitative planar laser-induced fluorescence, Dissertation Abstracts International, vol. 66–04, Section: B, p. 2273; Adviser: Ronald K. Hans (2005)

  49. D.A. Rothamer, Development and application of infrared and tracer-based planar laser-induced fluorescence imaging diagnostics, vol. 68, No. 12 (2008)

  50. M. Orain, P. Baranger, B. Rossow, F. Grisch, Fluorescence spectroscopy of naphthalene at high temperatures and pressures: implications for fuel-concentration measurements. Appl. Phys. B 102, 163–172 (2011)

    Article  ADS  Google Scholar 

  51. C. Baumhakl, S. Karellas, Tar analysis from biomass gasification by means of online fluorescence spectroscopy. Opt. Lasers Eng. 49, 885–891 (2011)

    Article  Google Scholar 

  52. S.A. Kaiser, M.B. Long, Quantitative planar laser-induced fluorescence of naphthalenes as fuel tracers. Proc. Combust. Inst. 30, 1555–1563 (2005)

    Article  Google Scholar 

  53. R. Sun, N. Zobel, Y. Neubauer, C.C. Chavez, F. Behrendt, Analysis of gas-phase polycyclic aromatic hydrocarbon mixtures by laser-induced fluorescence. Opt. Lasers Eng. 48, 1231–1237 (2010)

    Article  Google Scholar 

  54. M. Suto, X. Wang, J. Shan, L.C. Lee, Quantitative photoabsorption and fluorescence spectroscopy of benzene, naphthalene, and some derivatives at 106–295 nm. J. Quant. Spectrosc. Radiat. Trans. 48, 79–89 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (91441129, 51210010) and the National Key R&D Program of China (2016YFC0208000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He Lin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 840 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Wang, L., Liu, P. et al. Measurement and extrapolation modeling of PAH laser-induced fluorescence spectra at elevated temperatures. Appl. Phys. B 125, 6 (2019). https://doi.org/10.1007/s00340-018-7115-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7115-6

Navigation