Skip to main content
Log in

Ag2S quantum dots in the fields of picosecond and femtosecond UV and IR pulses: optical limiting, nonlinear absorption and refraction properties

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate strong optical nonlinearities of silver sulfide (Ag2S) quantum dots (QDs) in the ultraviolet range. The 4-nm Ag2S QDs were prepared by chemical method and analyzed using picosecond (800 nm and 400 nm, 200 ps) and femtosecond (800 nm and 400 nm, 60 fs) laser pulses. Our Z-scan measurements show that these QDs have large nonlinear absorption coefficient (~ 10−3 cm W−1) at 400 nm. We also demonstrate the transient absorption and optical limiting in Ag2S QDs. Variations of the signs of nonlinear refractive indices and nonlinear absorption coefficients of QDs are demonstrated by changing pulse width and wavelength of probe radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Işık, A. Karatay, H. Gul Yaglioglu, A. Elmali, U. Kürüm, A. Ateş, N. Gasanly, Opt. Commun. 288, 107 (2013)

    Article  ADS  Google Scholar 

  2. I.L. Bolotin, D.J. Asunskis, A.M. Jawaid, Y. Liu, P.T. Snee, L. Hanley, J. Phys. Chem. C 114, 16257 (2010)

    Article  Google Scholar 

  3. Q. Li, C. Liu, L. Zang, Q. Gong, X. Yu, C. Cao, J. Opt. Soc. Am. B 25, 1978 (2008)

    Article  ADS  Google Scholar 

  4. X. Liu, Y. Adachi, Y. Tomita, J. Oshima, T. Nakashima, T. Kawai, Opt. Express 20, 13457 (2012)

    Article  ADS  Google Scholar 

  5. I. Gur, N.A. Fromer, M.L. Geier, A.P. Alivisatos, Science 310, 462 (2005)

    Article  ADS  Google Scholar 

  6. V.L. Colvin, M.C. Schlamp, A.P. Allvisatos, Nature 370, 354 (1994)

    Article  ADS  Google Scholar 

  7. S. Abe, J.J. Joos, L.I.D.J. Martin, Z. Hens, P.F. Smet, Light Sci. Appl. 6, e16271 (2017)

    Article  Google Scholar 

  8. V.M.N. Tessler, M. Kazes, S. Kan, U. Banin, Science 295, 3 (2002)

    Article  Google Scholar 

  9. D.L. Klein, R. Roth, A.K.L. Lim, A.P. Alivisatos, P.L. McEuen, Nature 389, 3 (1997)

    Article  Google Scholar 

  10. D.V. Talapin, C.B. Murray, Science 310, 86 (2005)

    Article  ADS  Google Scholar 

  11. Z. Zhang, Z. You, D. Chu, Light Sci. Appl. 3, e213 (2014)

    Article  ADS  Google Scholar 

  12. W.C. Chan, S. Nie, Science 281, 2016 (1998)

    Article  ADS  Google Scholar 

  13. M. Bruches Jr., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 281, 2013 (1998)

    Article  ADS  Google Scholar 

  14. R.A. Ganeev, A.I. Ryasnyansky, T. Usmannov, Opt. Quantum Electron. 35, 211 (2003)

    Article  Google Scholar 

  15. G.S. Boltaev, B. Sobirov, S. Reyimbaev, H. Sherniyozov, T. Usmanov, M.S. Smirnov, O.V. Ovchinnikov, I.G. Grevtseva, T.S. Kondratenko, H.S. Shihaliev, R.A. Ganeev, Appl. Phys. A 122, 999 (2016)

    Article  ADS  Google Scholar 

  16. L.W. Liu, S.Y. Hu, Y.P. Dou, T.H. Liu, J.Q. Lin, Y. Wang, Beilstein J. Nanotechnol. 6, 1781 (2015)

    Article  Google Scholar 

  17. P. Kumbhakar, M. Chattopadhyay, A.K. Mitra, Int. J. Nanosci. 10, 177 (2011)

    Article  Google Scholar 

  18. Z. Zeng, C.S. Garoufalis, A.F. Terzis, S. Baskoutas, J. Appl. Phys. 114, 023510 (2013)

    Article  ADS  Google Scholar 

  19. H. Linnenbank, Y. Grynko, J. Förstner, S. Linden, Light Sci. Appl. 5, e16013 (2016)

    Article  ADS  Google Scholar 

  20. L. Gao, C. Chen, K. Zeng, C. Ge, D. Yang, H. Song, J. Tang, Light Sci. Appl. 5, e16126 (2016)

    Article  ADS  Google Scholar 

  21. O.V. Ovchinnikov, M.S. Smirnov, A.S. Perepelitsa, T.S. Shatskikh, B.I. Shapiro, Quantum Electron. 45, 1143 (2015)

    Article  ADS  Google Scholar 

  22. Y.P. Sun, J.E. Riggs, K.B. Henbest, R.B. Martin, J. Opt. Soc. Am. B 9, 481 (2000)

    Google Scholar 

  23. R.B. Matin, M.J. Meziani, P. Pathak, J.E. Riggs, D.E. Cook, S. Perera, Y.-P. Sun, Opt. Mater. 29, 788 (2007)

    Article  ADS  Google Scholar 

  24. R. Karimzadeh, H. Aleali, N. Mansour, Opt. Commun. 284, 2370 (2011)

    Article  ADS  Google Scholar 

  25. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  26. G. Fan, S. Qu, Q. Wang, C. Zhao, L. Zhang, Z. Li, J. Appl. Phys. 109, 023102 (2011)

    Article  ADS  Google Scholar 

  27. H. Zeng, Y. Yang, X. Jiang, G. Chen, J. Qiu, F. Gan, J. Cryst. Growth 280, 516 (2005)

    Article  ADS  Google Scholar 

  28. R.A. Ganeev, G.S. Boltaev, R.I. Tugushev, T. Usmanov, Appl. Phys. B 100, 571 (2010)

    Article  ADS  Google Scholar 

  29. R.A. Ganeev, A.I. Ryasnyansky, A.T. Stepanov, T. Usmanov, Opt. Quantum Electron. 36, 949 (2004)

    Article  Google Scholar 

  30. R.A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, H. Kuroda, J. Appl. Phys. 103, 063102 (2008)

    Article  ADS  Google Scholar 

  31. A. Sahu, L. Qi, M.S. Kang, D. Deng, D.J. Norris, J. Am. Chem. Soc. 133, 6509 (2011)

    Article  Google Scholar 

  32. H. Aleali, N. Mansour, M. Mirzaie, Eng. Technol. Int. J. Phys. Math. Sci. 8, 1274 (2014)

    Google Scholar 

  33. H. Aleali, N. Mansour, Optik 127, 2485 (2016)

    Article  ADS  Google Scholar 

  34. W.J. Mir, A. Swarnkar, R. Sharma, A. Katti, K.V. Adarsh, A. Nag, J. Phys. Chem. Lett. 6, 3915 (2015)

    Article  Google Scholar 

  35. J. Sun, W. Yu, A. Usman, T.T. Isimjan, S. Dgobbo, E. Alarousu, K. Takanabe, O.F. Mohammed, J. Phys. Chem. Lett. 5, 659–665 (2014)

    Article  Google Scholar 

  36. M. Sheik-Bahae, D. Hutchings, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 27, 1296–1309 (1991)

    Article  ADS  Google Scholar 

  37. J. Etchepare, G. Grillon, J.P. Chambaret, G. Hamoniaux, A. Orszag, Opt. Commun. 63, 329–335 (1987)

    Article  ADS  Google Scholar 

  38. T. Kawazoe, H. Kawaguchi, J. Inoue, O. Haba, M. Ueda, Opt. Commun. 160, 125 (1999)

    Article  ADS  Google Scholar 

  39. R.A. Ganeev, A.I. Ryasnyansky, M. Baba, M. Suzuki, N. Ishizawa, M. Turu, S. Sakakibara, H. Kuroda, Appl. Phys. B 78, 433 (2004)

    Article  ADS  Google Scholar 

  40. L. Jing, S.V. Kershaw, Y. Li, X. Huang, Y. Li, A.L. Rogach, M. Gao, Chem. Rev. 116, 10623 (2016)

    Article  Google Scholar 

  41. F. Nan, F.-M. Xie, S. Liang, L. Ma, D.-J. Yang, X.-L. Liu, J.-H. Wang, Z.-Q. Cheng, X.-F. Yu, L. Zhou, Q.-Q. Wang, J. Zeng, Nanoscale 8, 11969 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

R.A.G. thanks the financial support from Chinese Academy of Sciences President’s International Fellowship Initiative (Grant no. 2018VSA0001).

Funding

National Natural Science Foundation of China (Grant nos. 91750205, 61774155); National Key Research and Development Program of China (2017YFB1104700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashid A. Ganeev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Y., Ganeev, R.A., Zhao, C. et al. Ag2S quantum dots in the fields of picosecond and femtosecond UV and IR pulses: optical limiting, nonlinear absorption and refraction properties. Appl. Phys. B 125, 1 (2019). https://doi.org/10.1007/s00340-018-7110-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7110-y

Navigation