Skip to main content
Log in

Combined temporal and spatial laser pulse shaping for two-photon excited fluorescence contrast improvement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on combined simultaneous temporal and spatial laser pulse shaping by utilizing light polarization properties. Thereto, a setup comprising a temporal pulse shaper, a waveplate, and a spatial shaper was developed and characterized by comparison with simulations. This enables to simultaneously shape one polarization component temporally and spatially while the perpendicular polarization component is modified temporally. The spatially and temporally modulated light fields were recorded and visualized by suitable contour plots, which was particularly demonstrated for cylindrically symmetric pulse profiles. Moreover, temporally and spatially shaped pulses were applied for two-photon excited fluorescence of dyes. These measurements were conducted by scanning third order phase functions for specific spatial pulse components which yields an enhanced contrast difference between fluorescing dyes. The presented temporal and spatial shaping method of ultrashort laser pulses has a high potential for biophotonic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, Science 282, 919–922 (1998)

    Article  ADS  Google Scholar 

  2. G. Vogt, G. Krampert, P. Niklaus, P. Nuernberger, G. Gerber, Phys. Rev. Lett. 94, 068305 (2005)

    Article  ADS  Google Scholar 

  3. A. Lindinger, C. Lupulescu, M. Plewicki, F. Vetter, A. Merli, S.M. Weber, L. Wöste, Phys. Rev. Lett. 93, 033001 (2004)

    Article  ADS  Google Scholar 

  4. W. Wohlleben, T. Buckup, J.L. Herek, M. Motzkus, ChemPhysChem 6, 850–857 (2005)

    Article  Google Scholar 

  5. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F.J. Garcia de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, F. Steeb, Nature 446, 301–304 (2007)

    Article  ADS  Google Scholar 

  6. R.S. Judson, H. Rabitz, Phys. Rev. Lett. 68, 1500–1503 (1992)

    Article  ADS  Google Scholar 

  7. T. Brixner, G. Gerber, ChemPhysChem 4, 418–438 (2003)

    Article  Google Scholar 

  8. F. Weise, A. Lindinger, Appl. Phys. B 101, 79–91 (2010)

    Article  ADS  Google Scholar 

  9. K.A. Walowicz, I. Pastirk, V.V. Lozovoy, M. Dantus, Phys. Chem. A 106, 9369–9373 (2002)

    Article  Google Scholar 

  10. W. Denk, J.H. Strickler, W.W. Webb, Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  11. S. Perry, R. Burke, E. Brown, Ann. Biomed. Eng. 40, 277 (2012)

    Article  Google Scholar 

  12. V.V. Lozovoy, I. Pastirk, K.A. Walowicz, M. Dantus, J. Chem. Phys. 118, 3187–3196 (2002)

    Article  ADS  Google Scholar 

  13. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Lett. 30, 1479–1481 (2005)

    Article  ADS  Google Scholar 

  14. C. Maurer, A. Jesacher, S. Bernet, M. Ritsch-Marte, Laser Photonics Rev. 5, 81–101 (2011)

    Article  ADS  Google Scholar 

  15. N. Sanner, N. Huot, E. Audouard, C. Larat, J.-P. Huignard, Opt. Lasers Eng. 45, 737–741 (2007)

    Article  Google Scholar 

  16. S. Hell, J. Wichmann, Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  17. G. Moneron, S. Hell, Opt. Exp. 17, 14567–14573 (2009)

    Article  ADS  Google Scholar 

  18. T. Feurer, J.C. Vaughan, R.M. Koehl, K.A. Nelson, Opt. Lett. 27, 652–654 (2002)

    Article  ADS  Google Scholar 

  19. M.J. Snare, F.E. Treloar, K.P. Ghiggino, P.J. Thistllethwaite, J. Photochem. 18, 335–346 (1982)

    Article  Google Scholar 

  20. R.F. Kubin, A.N. Fletcher, J. Luminescence 27, 455–462 (1982)

    Article  ADS  Google Scholar 

  21. J.H. Richardson, L.L. Steinmetz, S.B. Deutscher, W.A. Bookless, W.L. Schmelzinger, J. Phys. Chem. 33, 1592–1593 (1978)

    Google Scholar 

  22. T. Wu, J. Tang, B. Hajj, M. Cui, Opt. Express 19, 12961 (2011)

    Article  ADS  Google Scholar 

  23. N.A. Carvajal, C.H. Acevedo, Y.T. Moreno, Int. J. Opt. 2017, 6852019 (2017)

    Google Scholar 

  24. A. Patas, G. Achazi, N. Hermes, M. Pawowska, A. Lindinger, Appl. Phys. B 112, 579–586 (2013)

    Article  ADS  Google Scholar 

  25. G.M. van Dam, G. Themelis, L.M.A. Crane, N.J. Harlaar, R.G. Pleijhuis, W. Kelder, A. Sarantopoulos, J.S. de Jong, H.J.G. Arts, A.G.J. van der Zee, J. Bart, P.S. Low, V. Ntziachristos, Nat. Med. 17, 1315 (2011)

    Article  Google Scholar 

  26. Y. Urano, D. Asanuma, Y. Hama, Y. Koyama, T. Barrett, M. Kamiya, T. Nagano, T. Watanabe, A. Hasegawa, P.L. Choyke, H. Kobayashi, Nat. Med. 15, 104 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The Klaus Tschira Foundation (KTS) is acknowledged for financial support (project 00.314.2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kussicke, A., Tegtmeier, M., Patas, A. et al. Combined temporal and spatial laser pulse shaping for two-photon excited fluorescence contrast improvement. Appl. Phys. B 124, 237 (2018). https://doi.org/10.1007/s00340-018-7104-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7104-9

Navigation