Skip to main content
Log in

The enhancement of the abruptly autofocusing property with multiple circular Airy beams carrying lens phase factors

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To improve the abruptly autofocusing property of circular Airy beam, we propose a method to generate multiple circular Airy beams (MCAB) carrying lens phase factors using a spatial light modulator (SLM). The propagation dynamics of this kind of beam is theoretically simulated, as well as experimentally verified. It is shown that four identical beams are produced symmetrically and they can move toward the center simultaneously. By changing the lens phase information encoded in the SLM, we can achieve different focal positions and focal intensities as we want. With the same parameters, compared with a single circular Airy beam (SCAB), there are two focal planes and the abruptly autofocusing property can be greatly enhanced. It may have some applications in various fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. V. Garcés-Chávez, D. McGloin, H. Melville, W. Sibbett, K. Dholakia, Nature 419, 145–147 (2002)

    Article  ADS  Google Scholar 

  2. V. Garcés-Chávez, D. McGloin, K. Dholakia, Opt. Lett. 28, 657–659 (2003)

    Article  ADS  Google Scholar 

  3. K. Dholakia, P. Reece, M. Gu, Chem. Soc. Rev. 37, 42–55 (2007)

    Article  Google Scholar 

  4. T. Grosjean, D. Courjon, C. Bainier, Opt. Lett. 32, 976–978 (2007)

    Article  ADS  Google Scholar 

  5. K. Wang, L. Zeng, C. Yin, Opt. Commun. 216, 99–103 (2003)

    Article  ADS  Google Scholar 

  6. K. Kitamura, K. Sakai, S. Noda, Opt. Express 18, 4518–4525 (2010)

    Article  ADS  Google Scholar 

  7. S.N. Khonina, I. Golub, J. Opt. Soc. Am. A 30, 2029–2033 (2013)

    Article  ADS  Google Scholar 

  8. G. Biener, A. Niv, V. Kleiner, E. Hasman, Opt. Lett. 30, 1096–1098 (2005)

    Article  ADS  Google Scholar 

  9. S.N. Khonina, I. Golub, Opt. Lett. 40, 4070–4073 (2015)

    Article  ADS  Google Scholar 

  10. J. Durnin, J.J. Miceli Jr., J.H. Eberly, Phys. Rev. Lett. 58, 1499–1501 (1987)

    Article  ADS  Google Scholar 

  11. D.G. Hall, Opt. Lett. 21, 9–11 (1996)

    Article  ADS  Google Scholar 

  12. V.V. Kotlyar, R.V. Skidanov, S.N. Khonina, V.A. Soifer, Opt. Lett. 32, 742–744 (2007)

    Article  ADS  Google Scholar 

  13. J.C. Gutiérrez-Vega, M.D. Iturbe-Castillo, S. Chávez-Cerda, Opt. Lett. 25, 1493–1495 (2000)

    Article  ADS  Google Scholar 

  14. D.M. Cottrell, J.A. Davis, T.M. Hazard, Opt. Lett. 34, 2634–2636 (2009)

    Article  ADS  Google Scholar 

  15. J.A. Davis, M.J. Mitry, M.A. Bandres, I. Ruiz, K.P. McAuley, D.M. Cottrell, Appl. Opt. 48, 3170–3176 (2009)

    Article  ADS  Google Scholar 

  16. G.A. Siviloglou, D.N. Christodoulides, Opt. Lett. 32, 979–981 (2007)

    Article  ADS  Google Scholar 

  17. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Phys. Rev. Lett. 99, 213901 (2007)

    Article  ADS  Google Scholar 

  18. G.A. Siviloglou, J. Broky, A. Dogariu, D.N. Christodoulides, Opt. Lett. 33, 207–209 (2008)

    Article  ADS  Google Scholar 

  19. J. Broky, G.A. Siviloglou, A. Dogariu, D.N. Christodoulides, Opt. Express 16, 12880–12891 (2008)

    Article  ADS  Google Scholar 

  20. Salandrino, D.N. Christodoulides, Opt. Lett. 35, 2082–2084 (2010)

    Article  ADS  Google Scholar 

  21. D. Abdollahpour, S. Suntsov, D.G. Papazoglou, S. Tzortzakis, Phys. Rev. Lett. 105, 253901 (2010)

    Article  ADS  Google Scholar 

  22. W.H. Chong, D.N. Renninger, Christodoulides, F.W. Wise, Nat. Photonics 4, 103 (2010)

    Article  ADS  Google Scholar 

  23. J. Baumgartl, M. Mazilu, K. Dholakia, Nat. Photonics 2, 675–678 (2008)

    Article  ADS  Google Scholar 

  24. H. Cheng, W. Zang, W. Zhou, J. Tian, Opt. Express 18, 20384–20394 (2010)

    Article  ADS  Google Scholar 

  25. Z. Zheng, B.F. Zhang, H. Chen, J. Ding, H.T. Wang, Appl. Opt. 50, 43–49 (2011)

    Article  ADS  Google Scholar 

  26. Y. Gu, G. Gbur, Opt. Lett. 35, 3456–3458 (2010)

    Article  ADS  Google Scholar 

  27. P. Polynkin, M. Kolesik, J.V. Moloney, G.A. Siviloglou, D.N. Christodoulides, Science 324, 229–232 (2009)

    Article  ADS  Google Scholar 

  28. J.X. Li, W.P. Zang, J.G. Tian, Opt. Express 18, 7300–7306 (2010)

    Article  ADS  Google Scholar 

  29. N.K. Efremidis, D.N. Christodoulides, Opt. Lett. 35, 4045–4047 (2010)

    Article  ADS  Google Scholar 

  30. D.G. Papazoglou, N.K. Efremidis, D.N. Christodoulides, S. Tzortzakis, Opt. Lett. 36, 1842–1844 (2011)

    Article  ADS  Google Scholar 

  31. P. Chremmos, J. Zhang, N.K. Prakash, D.N. Efremidis, Christodoulides, Z. Chen, Opt. Lett. 36, 3675–3677 (2011)

    Article  ADS  Google Scholar 

  32. N.K. Chremmos, Efremidis, D.N. Christodoulides, Opt. Lett. 36, 1890–1892 (2011)

    Article  ADS  Google Scholar 

  33. Y. Jiang, K. Huang, X. Lu, Opt. Express 21, 24413–24421 (2013)

    Article  ADS  Google Scholar 

  34. N.K. Efremidis, V. Paltoglou, W. von Klitzing, Phys. Rev. A 87, 043637 (2013)

    Article  ADS  Google Scholar 

  35. P. Zhang, J. Prakash, Z. Zhang, M.S. Mills, N.K. Efremidis, D.N. Christodoulides, Z. Chen, Opt. Lett. 36, 2883–2885 (2011)

    Article  ADS  Google Scholar 

  36. D. Chremmos, Z. Chen, D.N. Christodoulides, N.K. Efremidis, Phys. Rev. A 85, 023828 (2012)

    Article  ADS  Google Scholar 

  37. P. Vaveliuk, A. Lencina, J.A. Rodrigo, O.M. Matos, Opt. Lett. 39, 2370–2373 (2014)

    Article  ADS  Google Scholar 

  38. S.N. Khonina, A.P. Porfirev, A.V. Ustinov, J. Opt. 20, 025605 (2017)

    Article  ADS  Google Scholar 

  39. Y. Jiang, K. Huang, X. Lu, Opt. Express 20, 18579–18584 (2012)

    Article  ADS  Google Scholar 

  40. N. Li, Y. Jiang, K. Huang, X. Lu, Opt. Express 22, 22847–22853 (2014)

    Article  ADS  Google Scholar 

  41. Y. Jiang, X. Zhu, W. Yu, H. Shao, W. Zheng, X. Lu, Opt. Express 23, 29834–29841 (2015)

    Article  ADS  Google Scholar 

  42. Zhang, J. He, IEEE Photon. J. 9, 6500510 (2017)

    Google Scholar 

  43. Y. Jiang, S. Zhao, W. Yu, X. Zhu, J. Opt. Soc. Am. A 35, 890–894 (2018)

    Article  ADS  Google Scholar 

  44. B. Wang, M. Ye, M. Honma, T. Nose, S. Sato, Jpn. J. Appl.Phys. 41, L1232–L1233 (2002)

    Article  ADS  Google Scholar 

  45. Z.X. Fang, Y.X. Ren, L. Gong, P. Vaveliuk, Y. Chen, R.D. Lu, J. Appl. Phys. 118, 203102 (2015)

    Article  ADS  Google Scholar 

  46. O. Mendoza-Yero, G. Minguez-Vega, J. Lancis, Opt. Lett. 39, 1740–1743 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2017YFB0503100); National Program for Special Support of Top-Notch Young Professionals, and the Fundamental Research Funds for the Central Universities (2016XZZX004-01, 2018FZA5002); The National Natural Science Foundation of China (Grant no. 11474254); Ministry of Industry and Information Technology of the People’s Republic of China (MIIT) (JCKY2016110B004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaikai Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Huang, K., Zha, Y. et al. The enhancement of the abruptly autofocusing property with multiple circular Airy beams carrying lens phase factors. Appl. Phys. B 124, 233 (2018). https://doi.org/10.1007/s00340-018-7102-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7102-y

Navigation