Skip to main content
Log in

Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To address the problem in which the signal-to-noise ratio of a raw atmospheric lidar signal decreases rapidly as the range increases, which has a tremendous effect on the accuracy and the effective range of lidar retrieval, many de-noising algorithms have been proposed. Among these methods, those based on the ensemble Kalman Filter (EnKF) exhibit good performance. EnKF-based methods can simultaneously denoise lidar signals and yield accurate retrieval results. However, due to poor forecasting in the EnKF step, biases exist in the results of these methods. In this study, a modified lidar inversion method was proposed for horizontal aerosol characteristic retrieval, which combines the joint retrieval method and Gaussian processing machine learning. This method compensates for the poor forecasting in the EnKF step in the joint retrieval method through the Gaussian processing machine learning algorithm, which can reduce the biases in the retrieval results. The modified lidar inversion method was applied to both simulated and real lidar signals, and the results show that the modified lidar inversion method is effective and practical in aerosol extinction characteristics’ analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Prokes, Opt. Eng. 48, 635 (2009)

    Article  Google Scholar 

  2. W. Krichbaumer, C. Werner, Appl. Phys. B 59, 517 (1994)

    Article  ADS  Google Scholar 

  3. F. Mao, W. Wang, Q. Min, W. Gong, Opt. Express 23, 604 (2015)

    Article  ADS  Google Scholar 

  4. X. Wu, H. Wang, B. Song, Appl. Opt. 54, 1015 (2015)

    Article  ADS  Google Scholar 

  5. R.T.H. Collis, Q. J. R. Meteorol. Soc. 92, 220 (1967)

    Article  ADS  Google Scholar 

  6. G.J. Kunz, G. De Leeuw, Applied optics 32, 3249 (1993)

    Article  ADS  Google Scholar 

  7. F. Rocadenbosch, C. Soriano, A. Comerón, J. Baldasano, Appl. Opt. 38, 3175 (1999)

    Article  ADS  Google Scholar 

  8. F. Rocadenbosch, A. Comerón, L. Albiol, Appl. Opt. 39, 6049 (2000)

    Article  ADS  Google Scholar 

  9. J.D. Klett, Appl. Opt. 20, 211 (1981)

    Article  ADS  Google Scholar 

  10. F.G. Fernald, Appl. Opt. 23, 652 (1984)

    Article  ADS  Google Scholar 

  11. M. Feiyue, G. Wei, M. Yingying, Opt. Lett. 37, 617 (2012)

    Article  ADS  Google Scholar 

  12. F. Mao, J. Li, C. Li, G. Wei, Q. Min, W. Wang, Opt. Express 23, A1589 (2015)

    Article  ADS  Google Scholar 

  13. H.-T. Fang, D.-S. Huang, Y.-H. Wu, Appl. Opt. 44, 1077 (2005)

    Article  ADS  Google Scholar 

  14. W. Gong, J. Li, F. Mao, J. Zhang, Chin. Opt. Lett. 9, 050101 (2011)

    Article  Google Scholar 

  15. F. Mao, W. Gong, C. Li, Opt. Express 21, 8286 (2013)

    Article  ADS  Google Scholar 

  16. X. Zeng, M. Xia, Y. Ge, W. Guo, K. Yang, Atmos. Environ. 177, 18 (2018)

    Article  ADS  Google Scholar 

  17. C. Li, Z. Pan, F. Mao, W. Gong, S. Chen, Q. Min, Opt. Express 23, 26509 (2015)

    Article  ADS  Google Scholar 

  18. P.B. Wigley, P.J. Everitt, dH.A. Van, J.W. Bastian, M.A. Sooriyabandara, G.D. Mcdonald, K.S. Hardman, C.D. Quinlivan, P. Manju, C.C. Kuhn, Sci. Rep. 6, 25890 (2016)

    Article  ADS  Google Scholar 

  19. S.T. Ounpraseuth, Int. J. Neural Syst. 14, 69 (2004)

    Article  Google Scholar 

  20. D. Nguyen-Tuong, J. Peters, in Local Gaussian process Regression for Real-Time Model-Based Robot control, 2008, p. 380

  21. Y. Bazi, F. Melgani, IEEE Trans. Geosci. Remote Sens. 48, 186 (2010)

    Article  ADS  Google Scholar 

  22. K. Chen, P. Jian, Z. Zhou, J.E. Guo, D. Zhang, IEEE Geosci. Remote Sens. Lett 10, 1285 (2013)

    Article  ADS  Google Scholar 

  23. M.Y. Yang, W. Liao, B. Rosenhahn, Z. Zhang, in Hyperspectral Image Classification Using Gaussian Process Models, 2015, p. 1717

  24. Troncoso, J.C. Riquelme, Neurocomputing 167, 24 (2015)

    Article  Google Scholar 

  25. Z.Q. Liu, L.I. Peng-Cheng, X.W. Chen, B.M. Zhang, H.T. Guo, Opt. Precis. Eng. 24, 210 (2016)

    Article  Google Scholar 

  26. V.A. Kovalev, W.E. Eichinger, Elastic Lidar: Theory, Practice, and Analysis Methods (John Wiley, Hoboken, 2005)

    Google Scholar 

  27. F. Mao, W. Gong, T. Logan, Opt. Express 21, 26876 (2013)

    Article  ADS  Google Scholar 

  28. Y. Sasano, Appl. Opt. 35, 4941 (1996)

    Article  ADS  Google Scholar 

  29. U.S. Atmosphere, US Standard Atmosphere (National Oceanic and Atmospheric Administration, 1976)

  30. G. Su, in Accelerating Particle Swarm Optimization Algorithms Using Gaussian Process Machine Learning, 2009, p. 174

  31. G. Su, B. Yu, Y. Xiao, L. Yan, Adv. Struct. Eng. 17, 1257 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant nos. 41406108 and 41349901).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, X., Guo, W., Yang, K. et al. Noise reduction and retrieval by modified lidar inversion method combines joint retrieval method and machine learning. Appl. Phys. B 124, 238 (2018). https://doi.org/10.1007/s00340-018-7095-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7095-6

Navigation