Skip to main content
Log in

Using laser-induced breakdown spectroscopy to monitor the surface hardness of titanium samples bombarded by carbon ions

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

On a long run, dominant extreme conditions in nuclear reactors lead to serious problems due to undesired changes in the physical properties of reactor inner walls. Exposure to high energetic ions is considered as a crucial affecting factor. Consequently, it is important to find a way to monitor the changes taking place. In this work laser-induced breakdown spectroscopy (LIBS) was used to monitor the changes in the surface hardness of the Ti samples after being bombarded with carbon ions with different doses. It has been found that bombarding of the titanium samples by carbon ions gives rise to a pronounced change in its physical properties, especially its surface hardness. LIBS measurements were successful in estimating the changes in samples’ surface hardness via monitoring the variations in the plasma excitation temperature (Te), and the obtained results were in good agreement with the values obtained conventionally for the measured surface hardness. Also, it was found that changing the Ti matrix by introducing a new element in the titanium samples material has a great influence on Te and consequently on the hardness measurements via LIBS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R. Gregory, J.-O. Choppin, Liljenzin, Jan Rydberg, Radiochemistry and Nuclear Chemistry (Butterworth-Heinemann, USA, 2002)

    Google Scholar 

  2. R.A. Knief, Nuclear Energy Technology (McGraw-Hill, 1981)

  3. S. Gary, Was, Ion beam modification of metals: compositional and microstructural changes. Prog. Surf. Sci. 32, 211–332 (1990)

    Google Scholar 

  4. X. Xiao, Q. Chen, H. Yang, H. Duan, J. Qu, A mechanistic model for depth-dependent hardness of ion irradiated metals. J. Nucl. Mater. 485, 80–89 (2017)

    Article  ADS  Google Scholar 

  5. X. Bai, S. Wu, P.K. Liaw, L. Shao, J. Gigax, Effect of heavy ion irradiation dosage on the hardness of SA508-IV reactor pressure vessel steel. Metals 25, 1–7 (2017)

    Google Scholar 

  6. H. Zhang, C. Zhang, Y. Yang, Y. Meng, J. Jang, A. Kimura, Irradiation hardening of ODS ferritic steels under helium implantation and heavy-ion irradiation. J. Nucl. Mater. 455, 349–353 (2014)

    Article  ADS  Google Scholar 

  7. A. Tripathi, D.K. Avasthi, S. Kumar, S. Mohapatra, A.I. Titov, P.A. Karaseov, M.V. Mishin, A.Ya. Vinogradov, Modification of properties of metal containing carbon films by swift heavy ion irradiation, in 10th International Vacuum Electron Sources Conference (IVESC), IEEE (2014)

  8. R.A. Andrievski, Behavior of radiation defects in nanomaterials. Rev. Adv. Mater. Sci. 29, 54–67 (2011)

    Google Scholar 

  9. R.D. Pilkington, J.S. Astin, J.S. Cowpe, Application of laser induced breakdown spectroscopy for surface hardness measurements. Spectrosc. Eur. 27, 13–15 (2015)

    Google Scholar 

  10. R. Fantoni, L. Caneve, F. Colao, L. Fornarini, V. Lazic, V. Spizzichino, Methodologies for laboratory laser induced breakdown spectroscopy semi-quantitative and quantitative Analysis: a review. Spectrochim. Acta B 63, 1097–1108 (2008)

    Article  ADS  Google Scholar 

  11. E. Tognoni, V. Palleschi, M. Corsi, G. Cristoforetti, Quantitative micro-analysis by laser-induced breakdown spectroscopy: a review of the experimental approaches. Spectrochim. Acta B 57, 1115–1130 (2002)

    Article  ADS  Google Scholar 

  12. R.A. Rezk, A.H. Galmed, M. Abdelkreem, N.A. AbdelGhany, M.A. Harith, Quantitative analysis of Cu and Co adsorbed on fish bones via laser induced breakdown spectroscopy. Opt. Laser Technol. 83, 131–139 (2016)

    Article  ADS  Google Scholar 

  13. G.S. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T.M. Miano, M. Capitelli, Heavy Metal concentrations in soils as determined by laser-induced breakdown spectroscopy (LIBS), with special emphasis on chromium. Environ. Res. 109, 413–420 (2009)

    Article  Google Scholar 

  14. A.H. Galmed, A.K. Kassem, H. Von Bergmann, M.A. Harith, A study of using femtosecond LIBS in analyzing metallic thin film–semiconductor interface. Appl Phys B 102, 197–204 (2011)

    Article  ADS  Google Scholar 

  15. A. Elhassan, A. Giakoumaki, D. Anglos, G.M. Ingo, L. Robbiola, M.A. Harith, Nanosecond, and femtosecond laser induced breakdown spectroscopic analysis of bonze alloys. Spectrochim. Acta B 63, 504–511 (2008)

    Article  ADS  Google Scholar 

  16. G. Galbacs, N. Jedlinszki, G. Cseh, Z. Galbacs, L. Túri, Accurate quantitative analysis of gold alloys using multi-pulse laser induced breakdown spectroscopy and a correlation-based calibration method. Spectrochim. Acta B 63, 591–597 (2008)

    Article  ADS  Google Scholar 

  17. A. Giakoumaki, K. Melessanaki, D. Anglos, Laser-induced breakdown spectroscopy (LIBS) in archaeological science applications and prospects. Anal. Bioanal. Chem. 387, 749–760 (2007)

    Article  Google Scholar 

  18. M.E. Asgill, D.W. Hahn, Particle size limits for quantitative aerosol analysis using laser-induced breakdown spectroscopy: temporal considerations. Spectrochim. Acta B 64, 1153–1158 (2009)

    Article  ADS  Google Scholar 

  19. K. Tsuyuki, S. Miura, N. Idris, K. Hendrik, T. Jie, K. Kagawa, Measurement of concrete strength using the emission intensity ratio between Ca(II) 396.8 nm and Ca(I) 422.6 nm in a Nd:YAG laser-induced plasma. Appl. Spectrosc. 60, 61–64 (2006)

    Article  ADS  Google Scholar 

  20. Z.A. Abdel-Salam, A.H. Galmed, E. Tognoni, M.A. Harith, Estimation of calcified tissues hardness via calcium and magnesium ionic to atomic line intensity ratio in laser induced breakdown spectra. Spectrochim. Acta B 62, 1343–1347 (2007)

    Article  ADS  Google Scholar 

  21. Z. Abdel-Salam, M. Abdelhamid, S.M. Khalil, M.A. Harith, LIBS new application: determination of metallic alloys surface hardness, in Proceedings of the 7th International Conference on Laser Applications (ICLA’09), pp. 49–52, May 2009

  22. J.S. Cowpe, R.D. Moorehead, D. Moser, J.S. Astin, S. Karthikeyan, S.H. Kilcoyne, G. Crofts, R.D. Pilkington, Hardness determination of bio-ceramics using laser-induced breakdown spectroscopy. Spectrochim. Acta B 66, 290–294 (2011)

    Article  ADS  Google Scholar 

  23. A. Timur, A.M. Labutin, N. Popov, Vasily, N.B. Lednev, Zorov, Correlation between properties of a solid sample and laser-induced plasma parameters. Spectrochim. Acta Part B 64, 938–949 (2009)

    Article  ADS  Google Scholar 

  24. S. Messaoud Aberkane, A. Bendib, K. Yahiaoui, S. Boudjemai, S. Abdelli-Messaci, T. Kerdja, S.E. Amara, M.A. Harith, Correlation between Fe–V–C alloys surface hardness and plasma temperature via LIBS technique. Appl. Surf. Sci. 301, 225–229 (2014)

    Article  ADS  Google Scholar 

  25. O.M. Khalil, I. Mingareev, T. Bonhoff, A.F. El-Sherif, M.C. Richardson, M.A. Harith, Studying the effect of zeolite inclusion in aluminum alloy on measurement of its surface hardness using laser induced breakdown spectroscopy technique. Opt. Eng. 53, 0141061–0141065 (2014)

    Article  Google Scholar 

  26. M. Jianwei Huang, S. Dong, W. Lu, J. Li, C. Lu, J.H. Liu, Yoo, Estimation of the mechanical properties of steel via LIBS combined with canonical correlation analysis (CCA) and support vector regression (SVR). J. Anal. At. Spectrom. 33, 720–729 (2018)

    Article  Google Scholar 

  27. M.A. Ismail, G. Cristoforetti, S. Legnaioli, L. Pardini, V. Palleschi, A. Salvetti, E. Tognoni, M.A. Harith, Anal. Bioanal. Chem. 385, 316–325 (2006)

    Article  Google Scholar 

  28. A. Khedr, S.H. Elnaby, V. Palleschi, A. Salvetti, M.A. Harith, Comparison between single- and double-pulse LIBS at different air pressures on silicon target. Appl. Phys. B 83, 651–657 (2006)

    ADS  Google Scholar 

  29. R. Kumar, R.J. Choudhary, S.I. Patil, S. Hussain, J.P. Srivastava, S.P. Sanyal, S.E. Lofland, Structural, electrical transport, magnetization, and 1/f noise studies in 200 MeV Ag ion irradiated La0.7Ce0.3MnO3 thin films. J. Appl. Phys. 96, 7383–7387 (2004)

    Article  ADS  Google Scholar 

  30. H.P. Klug, L. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1974)

    Google Scholar 

  31. M. Dongol, A. El-Denglawey, M.S. Abd El Sadek, I.S. Yahia, Thermal annealing effect on the structural and the optical properties of Nano CdTe films. Optik 126, 1352–1357 (2015)

    Article  ADS  Google Scholar 

  32. K. Mahmood, S. Bashir, M. Akram, A. Hayat, F. Ul-Haq And, S. Saadat, Carbon Ion irradiation effects on pulsed laser deposited titanium nitride thin films. Surf. Rev. Lett. 22, 1550020:1–1550020:10 (2015)

    Article  Google Scholar 

  33. M. Thakurdesai, D. Kanjilal, V. Bhattacharyya, Formation of nano-hillocks by impact of swift heavy ions on thin films of TiO2. Appl. Surf. Sci. 254, 4695–4700 (2008)

    Article  ADS  Google Scholar 

  34. Becker- de Mos, B., W. Kessler, Seelig, Determination of the electron density in an argon laser plasma by spectroscopy of the Hydrogen H α and H β Lines. Contributions to plasma physics 33, 275–284 (1993)

    Article  ADS  Google Scholar 

  35. W. Lochte-Holtgreven, Evaluation of plasma parameters, in Plasma Diagnostics (Wiley Interscience, New York, 1968)

    Google Scholar 

  36. R.W.P. McWhirter, Spectral Intensities, in Plasma Diagnostic Techniques (Academic Press, New York, 1965)

    Google Scholar 

  37. http://physics.nist.gov/PhysRefData/Handbook/index.html

  38. Y. Lee, S.P. Sawan, T.L. Thiem., Y. Teng, J. Sneddon, Interaction of a laser beam with metals. Part II: Space-resolved studies of laser-ablated plasma emission. Appl. Spectrosc. 46, 436–441 (1992)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Penny Louw for facilitating the Vickers tester in the center of Material Engineering in the University of Cape Town (UCT), Cape Town, South Africa. Also, authors would like to thank the SEM team at the University of Western Cape (UWC), Cape Town, South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Galmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galmed, A.H., Steenkamp, C., Ahmed, I. et al. Using laser-induced breakdown spectroscopy to monitor the surface hardness of titanium samples bombarded by carbon ions. Appl. Phys. B 124, 225 (2018). https://doi.org/10.1007/s00340-018-7093-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7093-8

Navigation