Skip to main content

A self-injection locked DBR laser for laser cooling of beryllium ions


We present a simple, robust, narrow-linewidth, frequency-doubled semiconductor laser source suitable for laser cooling and repumping of \(^9\text {Be}^+\) ions. A distributed Bragg reflector (DBR) laser diode operating at 626 nm is self-injection-locked to a frequency doubling cavity via phase-stabilised optical feedback when the laser is resonant with the cavity mode. The short-term laser instability is reduced from the MHz level to approximately 20 kHz by the injection process, thus eliminating the need for a high-bandwidth feedback loop to suppress the otherwise troublesome high-frequency laser noise. Long-term stability of the laser frequency is achieved by feeding back to the length of the enhancement cavity utilising an electro-optic frequency comb generator to produce a beatnote with a laser that is detuned by 98 GHz. Long-term injection locking and frequency stabilisation via a wavemeter are ensured using automatic relocking algorithms. This work could find applications throughout the atomic physics community as a cost-effective alternative to expensive, intrinsically narrow-linewidth lasers where cavity-enhanced frequency doubling is required.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    R. Blatt, D. Wineland, Nature 45, 1008–1015 (2008)

    ADS  Google Scholar 

  2. 2.

    J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, Phys. Rev. Lett. 117, 060505 (2016)

    ADS  Google Scholar 

  3. 3.

    J.J. Bollinger, D.J. Heizen, W.M. Itano, S.L. Gilbert, D.J. Wineland, I.E.E.E. Trans, Inst. Meas. 40, 126–8 (1991)

    Google Scholar 

  4. 4.

    D.J. Larson, J.C. Bergquist, J.J. Bollinger, W.M. Itano, D.J. Wineland, Phys. Rev. Lett. 57, 70 (1986)

    ADS  Google Scholar 

  5. 5.

    D. Kielpinski, B.E. King, C.J. Myatt, C.A. Sackett, Q.A. Turchette, W.M. Itano, C. Monroe, D.J. Wineland, W.H. Zurek, Phys. Rev. A 61, 032310 (2000)

    ADS  Google Scholar 

  6. 6.

    M. Barrett, B. DeMarco, T. Schaetz, V. Meyer, D. Leibfried, J. Britton, J. Chiaverini, W. Itano, B. Jelenković, J. Jost, C. Langer, T. Rosenband, D. Wineland, Phys. Rev. A 68, 042302 (2003)

    ADS  Google Scholar 

  7. 7.

    P.O. Schmidt, T. Rosenband, C. Langer, W.M. Itano, J.C. Bergquist, D.J. Wineland, Science 309, 749–52 (2005)

    ADS  Google Scholar 

  8. 8.

    L. Schmöger, O.O. Versolato, M. Schwarz, M. Kohnen, A. Windberger, B. Piest, S. Feuchtenbeiner, J. Pedregosa, T. Leopold, P. Micke, A.K. Hansen, T.M. Baumann, M. Drewsen, J. Ullrich, P.O. Schmidt, J.R. Crespo López-Urrutia, Science 347, 1233–6 (2015)

    ADS  Google Scholar 

  9. 9.

    B. Roth, U. Fröhlich, S. Schiller, Phys. Rev. Lett. 94, 053001 (2005)

    ADS  Google Scholar 

  10. 10.

    P. Blythe, B. Roth, U. Fröhlich, H. Wenz, S. Schiller, Phys. Rev. Lett. 95, 183002 (2005)

    ADS  Google Scholar 

  11. 11.

    B. Roth, A. Ostendorf, H. Wenz, S. Schiller, J. Phys. B 38, 3673 (2005)

    ADS  Google Scholar 

  12. 12.

    B. Roth, P. Blythe, H. Daerr, L. Patacchini, S. Schiller, J. Phys. B 39, 1241–58 (2006)

    ADS  Google Scholar 

  13. 13.

    C. Smorra, K. Blaum, L. Bojtar, M. Borchert, K.A. Franke, T. Higuchi, N. Leefer, H. Nagahama, Y. Matsuda, A. Mooser, M. Niemann, C. Ospelkaus, W. Quint, G. Schneider, S. Sellner, T. Tanaka, S. Van Gorp, J. Walz, Y. Yamazaki, S. Ulmer, Eur. Phys. J. Spec. Top. 224, 1–54 (2015)

    Google Scholar 

  14. 14.

    M. Bohman, A. Mooser, G. Schneider, N. Schön, M. Wiesinger, J. Harrington, T. Higuchi, H. Nagahama, S. Sellner, C. Smorra, K. Blaum, Y. Matsuda, W. Quint, J. Walz, S. Ulmer, arXiv:1709.00433 (2017)

  15. 15.

    J.J. Bollinger, J.S. Wells, D.J. Wineland, W.M. Itano, Phys. Rev. A 31, 2711 (1985)

    ADS  Google Scholar 

  16. 16.

    H. Schnitzler, U. Fröhlich, T.K.W. Boley, A.E.M. Clemen, J. Mlynek, A. Peters, S. Schiller, Appl. Opt. 41, 7000–5 (2002)

    ADS  Google Scholar 

  17. 17.

    A.C. Wilson, C. Ospelkaus, A.P. VanDevender, J.A. Mlynek, K.R. Brown, D. Leibfried, D.J. Wineland, App. Phys. B 105, 741–8 (2011)

    ADS  Google Scholar 

  18. 18.

    F.M.J. Cozijn, J. Biesheuvel, A.S. Flores, W. Ubachs, G. Blume, A. Wicht, K. Paschke, G. Erbert, J.C.J. Koelemeij, Opt. Lett. 38, 2370–2 (2013)

    ADS  Google Scholar 

  19. 19.

    H. Ball, M.W. Lee, S.D. Gensemer, M.J. Biercuk, Rev. Sci. Inst. 84, 063107 (2013)

    ADS  Google Scholar 

  20. 20.

    R.A. Carollo, D.A. Lane, E.K. Kleiner, P.A. Kyaw, C.C. Teng, C.Y. Ou, S. Qiao, D. Hanneke, Opt. Express 25, 7220–9 (2017)

    ADS  Google Scholar 

  21. 21.

    S. Vasilyev, A. Nevsky, I. Ernsting, M. Hansen, J. Shen, S. Schiller, App. Phys. B 103, 27–33 (2011)

    ADS  Google Scholar 

  22. 22.

    G. Blume, O. Nedow, D. Feise, J. Pohl, K. Paschke, Opt. Express 21, 21677–84 (2013)

    ADS  Google Scholar 

  23. 23.

    K.G. Libbrecht, J.L. Hall, Rev. Sci. Inst. 64, 2133–5 (1993)

    ADS  Google Scholar 

  24. 24.

    S. Hannig, J. Mielke, J.A. Fenske, M. Misera, N. Beev, C. Ospelkaus, P.O. Schmidt, Rev. Sci. Inst. 89, 013106 (2018)

    ADS  Google Scholar 

  25. 25.

    D. Gangloff, M. Shi, T. Wu, A. Bylinskii, B. Braverman, M. Gutierrez, R. Nichols, J. Li, K. Aichholz, M. Cetina, L. Karpa, B. Jelenković, I. Chuang, V. Vuletić, arXiv:1505.03381 (2015)

  26. 26.

    R.R. Kunz, V. Liberman, D.K. Downs, J. Vac. Sci. Technol. B 18, 1306–13 (2000)

    Google Scholar 

  27. 27.

    S.F. Cooper, Z. Burkley, A.D. Brandt, C. Rasor, D.C. Yost, Opt. Lett. 43, 1375 (2018)

    ADS  Google Scholar 

  28. 28.

    B. Brandstätter, A. McClung, K. Schüppert, B. Casabone, K. Friebe, A. Stute, P.O. Schmidt, C. Deutsch, J. Reichel, R. Blatt, T.E. Northup, Rev. Sci. Inst. 84, 123104 (2013)

    ADS  Google Scholar 

  29. 29.

    A. Pereira, E. Quesnel, M. Reymermier, J. Appl. Phys. 105, 013109 (2009)

    ADS  Google Scholar 

  30. 30.

    B. Dahmani, L. Hollberg, R. Drullinger, Opt. Lett. 12, 876–8 (1987)

    ADS  Google Scholar 

  31. 31.

    Y. Zhao, Q. Wang, F. Meng, Y. Lin, S. Wang, Y. Li, B. Lin, S. Cao, J. Cao, Z. Fang, T. Li, E. Zang, Opt. Lett. 37, 4729–31 (2012)

    ADS  Google Scholar 

  32. 32.

    A. Hemmerich, D.H. McIntyre, C. Zimmermann, T.W. Hänsch, Opt. Lett. 15, 372–4 (1990)

    ADS  Google Scholar 

  33. 33.

    Q. Lin, M.A. Van Camp, H. Zhang, B. Jelenković, V. Vuletić, Opt. Lett. 37, 1989–91 (2012)

    ADS  Google Scholar 

  34. 34.

    W. Lewoczko-Adamczyk, C. Pyrlik, J. Häger, S. Schwertfeger, A. Wicht, A. Peters, G. Erbert, G. Tränkle, Opt. Express 23, 9705 (2015)

    ADS  Google Scholar 

  35. 35.

    Y. Colombe, D.H. Slichter, A.C. Wilson, D. Leibfried, D.J. Wineland, Opt. Express 22, 19783–93 (2014)

    ADS  Google Scholar 

  36. 36.

    C.D. Marciniak, H.B. Ball, A.T.-H. Hung, M.J. Biercuk, Opt. Express 25, 15643–61 (2017)

    ADS  Google Scholar 

  37. 37.

    M. Kourogi, K. Nakagawa, M. Ohtsu, IEEE J. Quantum Electron. 29, 2693–2701 (1993)

    ADS  Google Scholar 

  38. 38.

    H.S. Margolis, S.N. Lea, G. Huang, P. Gill, Proceedings of the 14th European frequency and time forum, Torino, pp 194–8 (2001)

  39. 39.

    C. Bréant, P. Laurent, A. Clairon, Frequency Standards and Metrology (Springer, Berlin, 1989), pp. 441–4

    Google Scholar 

  40. 40.

    D.G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J.M. Robinson, J. Ye, F. Riehle, U. Sterr, Phys. Rev. Lett. 118, 263202 (2017)

    ADS  Google Scholar 

  41. 41.

    G. Di Domenico, S. Schilt, P. Thomann, Appl. Opt. 49, 4801 (2010)

    ADS  Google Scholar 

  42. 42.

    K. Saleh, J. Millo, A. Didier, Y. Kersalé, C. Lacroûte, Appl. Opt. 54, 9446–9 (2015)

    ADS  Google Scholar 

  43. 43.

    L. Couturier, I. Nosske, F. Hu, C. Tan, C. Qiao, Y.H. Jiang, P. Chen, M. Weidemüller, Rev. Sci. Inst. 89, 043103 (2018)

    ADS  Google Scholar 

  44. 44.

    S. Kobtsev, S. Kandrushin, A. Potekhin, Appl. Opt. 46, 5840–3 (2007)

    ADS  Google Scholar 

  45. 45.

    T.A. Heumier, J.L. Carlsten, IEEE J. Quantum Electron 29, 2756–61 (1993)

    ADS  Google Scholar 

  46. 46.

    S. Chiow, Q. Long, C. Vo, H. Müller, S. Chu, Appl. Opt. 46, 7997–8001 (2007)

    ADS  Google Scholar 

  47. 47.

    B. Hemmerling, F. Gebert, Y. Wan, D. Nigg, I.V. Sherstov, P.O. Schmidt, App. Phys. B 104, 583–90 (2011)

    ADS  Google Scholar 

  48. 48.

    A.D. Ludlow, M.M. Boyd, J. Ye, E. Peik, P.O. Schmidt, Rev. Mod. Phys. 87, 637–701 (2015)

    ADS  Google Scholar 

  49. 49.

    J. Cao, P. Zhang, J. Shang, K. Cui, J. Yuan, S. Chao, S. Wang, H. Shu, X. Huang, App. Phys. B 123, 112 (2017)

    ADS  Google Scholar 

  50. 50.

    S.B. Koller, J. Grotti, S. Vogt, A. Al-Masoudi, S. Dörscher, S. Häfner, U. Sterr, C. Lisdat, Phys. Rev. Lett. 118, 073601 (2017)

    ADS  Google Scholar 

Download references


The authors gratefully thank Uwe Sterr and Dirk Piester for generously loaning equipment to make this project possible, Helen Margolis for her advice regarding the EOM frequency comb, and thank Lennart Pelzer and Mariia Stepanova for their contributions to the experiment. SAK acknowledges support by the Alexander von Humboldt Foundation, and PT was supported by the IP@Leibniz programme of the Leibniz Universität Hannover. We acknowledge support from the Deutsche Forschungsgemeinschaft through SCHM2678/5-1.

Author information



Corresponding author

Correspondence to Steven A. King.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

King, S.A., Leopold, T., Thekkeppatt, P. et al. A self-injection locked DBR laser for laser cooling of beryllium ions. Appl. Phys. B 124, 214 (2018).

Download citation