Skip to main content
Log in

Nonlinear optical studies of sodium borate glasses embedded with gold nanoparticles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Optical glasses possessing large third-order optical nonlinear susceptibility and fast response times are promising materials for the development of advanced nonlinear photonic devices. In this context, gold nanoparticle (NP)-doped borate glasses were synthesized via the melt-quench method. The nonlinear optical (NLO) properties of thus prepared glasses were investigated at different wavelengths (i.e., at 532 nm using nanosecond pulses, at 750 nm, 800 nm, and 850 nm wavelengths using femtosecond, MHz pulses). At 532 nm, open aperture (OA) Z-scan signatures of gold NP-doped borate glasses demonstrated reverse saturable absorption (RSA), attributed to mixed intra-band and interband transitions, while in the 750‒850 nm region, the OA Z-scan data revealed the presence of saturable absorption (SA), possibly due to intra-band transitions. The NLO coefficients were evaluated at all the spectral regions and further compared with some of the recently reported glasses. The magnitudes of obtained NLO coefficients clearly demonstrate that the investigated glasses are potential materials for photonic device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C. Zheng, J. Huang, L. Lei, W. Chen, H. Wang, W. Li, Appl. Phys. B Lasers Opt. 124, 17 (2018)

    Article  ADS  Google Scholar 

  2. H. Fares, H. Elhouichet, B. Gelloz, M. Ferid, J. Appl. Phys. 117, 1 (2015)

    Article  Google Scholar 

  3. H. Jain, A. Issa, R.V. Anavekar, R. Böhmer, O. Kanert, R. Kuchler, Appl. Phys. Lett. 95, 1 (2009)

    Article  Google Scholar 

  4. X. Zhang, W. Luo, L.J. Wang, W. Jiang, J. Mater. Chem. C 2, 6966 (2014)

    Article  Google Scholar 

  5. G. Jagannath, B. Eraiah, K. NagaKrishnakanth, S. Venugopal Rao, J. Non-Cryst. Solids 482, 160 (2018)

    Article  ADS  Google Scholar 

  6. C. Feng, M. Liu, Y. Li, X. Gao, Z. Kang, G. Qin, Z. Jia, X. Tao, T. Song, Y. Dun, F. Bai, P. Li, Q. Wang, J. Fang, Appl. Phys. B Lasers Opt. 123, 81 (2017)

    Article  ADS  Google Scholar 

  7. Z. Xu, Q. Guo, C. Liu, Z. Ma, X. Liu, J. Qiu, Appl. Phys. B Lasers Opt. 122, 259 (2016)

    Article  ADS  Google Scholar 

  8. H.H. Mai, V.E. Kaydashev, V.K. Tikhomirov, E. Janssens, M.V. Shestakov, M. Meledina, S. Turner, G.V. Tendeloo, V.V. Moshchalkov, P. Lievens, J. Phys. Chem. C 118, 15995 (2014)

    Article  Google Scholar 

  9. M.B. Roberge, S.H. Santagneli, S.H. Messaddeq, M. Rioux, Y. Ledemi, H. Eckert, Y. Messaddeq, J. Phys. Chem. C 121, 13823 (2017)

    Article  Google Scholar 

  10. M.M. Hivrekar, D.B. Sable, M.B. Solunke, K.M. Jadhav, J. Non-Cryst. Spldis 474, 58 (2017)

    Article  ADS  Google Scholar 

  11. D. Manzani, J.M.P. Almeida, M. Napoli, L.D. Boni, M. Nalin, C.R.M. Afonso, S.J.L. Ribeiro, C.R. Mendonça, Plasmonics 8, 1667 (2013)

    Article  Google Scholar 

  12. T.R. Oliveira, E.L.F. Filho, C.B.D. Araujo, D.S.D. Silva, L.R.P. Kassab, D.M.D. Silva, J. Appl. Phys. 114, 1 (2013)

    Article  Google Scholar 

  13. R.F. Souza, M.A.R.C. Alencar, J.M. Hickmann, R. Kobayashi, L.R.P. Kassab, Appl. Phys. Lett. 89, 1 (2006)

    Article  Google Scholar 

  14. S. Qu, Y. Gao, X. Jiang, H. Zeng, Y. Song, J. Qiu, C. Zhu, K. Hirao, Opt. Commun. 224, 321 (2003)

    Article  ADS  Google Scholar 

  15. R. Schneider, R. Schneider, E.A.D. Campos, J.B.S. Mendes, J.F. Felix, P.A.S. Cruz, RSC Adv. 7, 41479 (2017)

    Article  Google Scholar 

  16. J. Qiu, M. Shirai, T. Nakaya, J. Si, X. Jiang, C. Zhu, K. Hirao, Appl. Phys. Lett. 8, 3040 (2002)

    Article  ADS  Google Scholar 

  17. Y. Kobayashi, M.A.C. Duarte, L.M.L. Marzan, Langmuir 17, 6375 (2001)

    Article  Google Scholar 

  18. C. Mohr, M. Dubiel, H. Hofmeister, J. Phys. Condens. Matter 13, 525 (2001)

    Article  ADS  Google Scholar 

  19. D.F. Franco, A.C. Santana, L.F.C.D. Oliveira, M.A.P. Silva, J. Mater. Chem. C 3, 3803 (2015)

    Article  Google Scholar 

  20. R. Rajaramakrishna, S. Karuthedath, R.V. Anavekar, H. Jain, J. Non–Cryst. Solids 358, 1667 (2012)

    Article  ADS  Google Scholar 

  21. J. Zhong, W. Xiang, H. Zhao, W. Zhao, G. Chen, X. Liang, J. Alloys Compd. 537, 269 (2012)

    Article  Google Scholar 

  22. J.M.P. Almeida, D.S. da Silva, L.R.P. Kassab, S.C. Zilio, C.R. Mendonça, L. De Boni, Opt. Mater. 36, 829 (2014)

    Article  ADS  Google Scholar 

  23. M.S. Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W.V. Stryland, IEEE J. Quantum Electron. 26, 760 (1990)

    Article  ADS  Google Scholar 

  24. J. Sasai, K. Hirao, J. Appl. Phys. 89, 4548 (2001)

    Article  ADS  Google Scholar 

  25. K.H. Su, Q.H. Wei, X. Zhang, J.J. Mock, D.R. Smith, S. Schultz, Nano Lett. 3, 1087 (2003)

    Article  ADS  Google Scholar 

  26. S. Ju, P.R. Watekar, S.G. Kang, J.K. Chung, C.J. Kim, W.T. Han, J. Non-Cryst. Solids 356, 2578 (2010)

    Article  ADS  Google Scholar 

  27. S.K. Ghoshal, A. Awang, M.R. Sahar, R. Arifin, J. Lumin. 159, 265 (2015)

    Article  Google Scholar 

  28. G. Mie, Ann. Phys. 330, 377 (1908)

    Article  Google Scholar 

  29. P. Kumar, M.C. Mathpal, A.K. Tripathi, J. Prakash, A. Agarwal, M.M. Ahmad, H.C. Swart, Phys. Chem. Chem. Phys. 17, 8596 (2015)

    Article  Google Scholar 

  30. D. Gall, J. Appl. Phys. 119, 1 (2016)

    Article  Google Scholar 

  31. T. Som, B. Karmakar, J. Opt. Soc. Am. B 26, 21 (2009)

    Article  Google Scholar 

  32. Y. Zhang, J. Zhang, Y. Jin, J. Zhang, G. Hu, S. Lin, R. Yuan, X. Liang, W. Xiang, J. Mater. Sci. Mater. Electron. 28, 1 (2017)

    Google Scholar 

  33. D. Rativa, R.E.D. Araujo, C.B.D. Araujo, A.S.L. Gomes, L.R.P. Kassab, Appl. Phys. Lett. 90, 1 (2007)

    Article  Google Scholar 

  34. B. Shanmugavelu, V.V.R.K. Kumar, R. Kuladeep, D.N. Rao, J. Appl. Phys. 114, 1 (2013)

    Article  Google Scholar 

  35. G. Lin, D. Tan, F. Luo, D. Chen, Q. Zhao, J. Qiu, J. Non–Cryst. Solids 357, 2312 (2011)

    Article  ADS  Google Scholar 

  36. R.L. Sutherland, Handbook of nonlinear optics, 2nd edn. (Marcel Dekker, New York, 2003)

    Book  Google Scholar 

  37. S.B. Kolavekar, N.H. Ayachit, G. Jagannath, K. NagaKrishnakanth, S. Venugopal Rao, Opt. Mater. 83, 34 (2018)

    Article  ADS  Google Scholar 

  38. I. Papagiannouli, P. Aloukos, D. Rioux, M. Meunier, S. Couris, J. Phys. Chem. C 119, 6861 (2015)

    Article  Google Scholar 

  39. F. Chen, T. Xu, S. Dai, Q. Nie, X. Shen, X. Wang, B. Song, J. Non-Cryst. Solids 256, 2786 (2010)

    Article  ADS  Google Scholar 

  40. A. Ajami, W. Husinsky, B. Svecova, S. Vytykacova, P. Nekvindova, J. Non-Cryst. Solids 426, 159 (2015)

    Article  ADS  Google Scholar 

  41. B. Ghosh, P. Chakraborty, S. Mohapatra, P. Ann Kurian, C. Vijayan, P.C. Deshmukh, P. Mazzoldi, Mater. Lett. 61, 4512 (2007)

    Article  Google Scholar 

  42. R. Philip, P. Chantharasupawong, H. Qian, R. Jin, J. Thomas, Nano Lett. 12, 4661 (2012)

    Article  ADS  Google Scholar 

  43. N. Sugimoto, H. Kanbara, S. Fujiwara, K. Tanaka, K. Hirao, Opt. Lett. 21, 1637 (1996)

    Article  ADS  Google Scholar 

  44. B.L. Yu, A.B. Bykov, T. Qiu, P.P. Ho, R.R. Alfano, N. Borrelli, Opt.Commun. 215, 407 (2003)s

    Article  ADS  Google Scholar 

Download references

Acknowledgements

One of the authors (GJ) is grateful to Dr. Rajan V Anavekar, former Professor, Department of Physics, Bangalore University, Bangalore, for useful discussions and valuable suggestions. The authors thank Sophisticated Analytical Instrument Facility (SAIF), Indian Institute of Technology, Bombay, India for providing HR-TEM experimental facility. S. V. Rao thanks DRDO, India for financial support through ACRHEM. GJ would like to thank Dr. Promod Kumar, Department of Physics, University of the Free state, Bloemfontein, South Africa for useful inputs given to measure the particle size using Mie theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eraiah Bheemaiah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangareddy, J., Bheemaiah, E., Gandhiraj, V. et al. Nonlinear optical studies of sodium borate glasses embedded with gold nanoparticles. Appl. Phys. B 124, 205 (2018). https://doi.org/10.1007/s00340-018-7074-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7074-y

Navigation