Skip to main content
Log in

An RBF neural network approach for retrieving atmospheric extinction coefficients based on lidar measurements

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Lidar is an effective remote sensing method for obtaining the optical properties of aerosols, such as the aerosol extinction coefficient (AEC), the aerosol optical depth (AOD), and the related atmospheric visibility. However, improving the accuracy and efficiency of lidar data retrieval remains challenging due to the uncertainties associated in determining the AEC boundary value (AEC-BV) and the aerosol extinction-to-backscatter ratio (AEBR), as well as the complex and time-consuming calculations required. In this paper, we propose a novel method, a feedback radial basis function (RBF-FB), for retrieving high-precision AEC profiles based on a radial basis function neural network. First, using the secant method, we determine accurate values for AEC-BV and AEBR, and generate the AEC profiles by the Fernald method. We then choose a set of lidar signals and their corresponding AEC profiles as learning samples for network training and establish an RBF network model for AEC retrieval. Next, we correct the network output by introducing a feedback mechanism that uses the AOD measured by a sun photometer as the error criterion. Tests on measured signals confirm that the outputs of the proposed RBF-FB model are consistent with the Fernald method and have the advantages of speed and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. E. Chemyakin, S. Burton, A. Kolgotin, D. Müller, C. Hostetler, R. Ferrare, Appl. Opt. 55, 2188 (2016)

    Article  ADS  Google Scholar 

  2. S. Ghosh, M.H. Smith, A. Rap, Phil. Trans. R. Soc. 365, 2659 (2007)

    Article  ADS  Google Scholar 

  3. Z.M. Tao, D. Liu, X.M. Ma, B. Shi, H.H. Shan, M. Zhao, C.B. Xie, Y.J. Wang, Appl. Phys. B. 120, 631 (2015)

    Article  ADS  Google Scholar 

  4. W.D. Yan, L.X. Yang, J.M. Chen, X.F. Wang, L. Wen, T. Zhao, W.X. Wang, Atmos. Res. 188, 39 (2017)

    Article  Google Scholar 

  5. M. Li, L.H. Jiang, X.L. Xiong, Y.Z. Ma, J.S. Liu, Opt. Rev. 23, 646 (2016)

    Article  Google Scholar 

  6. Q.S. He, C.C. Li, J.T. Mao, A.K.H. Lau, P.R. Li, Atmos. Chem. Phys. 6, 3243 (2006)

    Article  ADS  Google Scholar 

  7. Z.R. Zhou, D.X. Hua, Y.F. Wang, Q. Yang, S.C. Li, Y. Li, H.W. Wang, Opt. Lasers Eng. 51, 961 (2013)

    Article  Google Scholar 

  8. R.T.H. Collis, F.G. Fernald, M.G.H. Ligda, Nature. 203, 1274 (1964)

    Article  ADS  Google Scholar 

  9. R. Francesc, C. Adolfo, P. Daniel, Appl. Opt. 37, 2199 (1998)

    Article  Google Scholar 

  10. J.M.B. Dias, J.M.N. Leitao, E.S.R. Fonseca, IEEE Trans. Geosci. Remote Sens. 42, 443 (2004)

    Article  ADS  Google Scholar 

  11. J.D. Klett, Appl. Opt. 20, 211 (1981)

    Article  ADS  Google Scholar 

  12. F.G. Fernald, Appl. Opt. 23, 652 (1984)

    Article  ADS  Google Scholar 

  13. F.Y. Mao, W. Gong, T. Logan, Opt. Express 21, 26876 (2013)

    Article  ADS  Google Scholar 

  14. F.Y. Mao, W. Gong, C. Li, Opt. Express 21, 8286 (2013)

    Article  ADS  Google Scholar 

  15. F.Y. Mao, W. Gong, Y.Y. Ma, Opt. Lett. 37, 617 (2012)

    Article  Google Scholar 

  16. A. Albert, R. Maren, W. Claus, Opt. Lett. 15, 746 (1990)

    Article  ADS  Google Scholar 

  17. N.W. Cao, F.K. Yang, C.X. Zhu, Opt. Spectrosc. 116, 649 (2014)

    Article  ADS  Google Scholar 

  18. J. Su, Y.H. Wu, M.P. McCormick, L.Q. Lei, R.B. Lee, III: Appl. Phys. B. 116, 61 (2014)

    Article  ADS  Google Scholar 

  19. J.K. Gerard, D.L. Gerrit, Appl. Opt. 32, 3249 (1993)

    Article  Google Scholar 

  20. J.H. Qiu, Adv. Atmos. Sci. 5, 229 (1988)

    Article  Google Scholar 

  21. V.A. Kovalev, Appl. Opt. 32, 6053 (1993)

    Article  ADS  Google Scholar 

  22. T. Takamura, Y. Sasano, T. Hayasaka, Appl. Opt. 33, 7132 (1994)

    Article  ADS  Google Scholar 

  23. A. Albert, W. Ulla, R. Maren, W. Claus, M. Walfried, Appl. Opt. 31, 7113 (1992)

    Article  ADS  Google Scholar 

  24. J.W. Hair, C.A. Hostetler, A.L. Cook, D.B. Harper, R.A. Ferrare, T.L. Mack, W. Welch, L.R. Lzquierdo, F.E. Hovis, Appl. Opt. 47, 6734 (2008)

    Article  ADS  Google Scholar 

  25. X.M. Lu, Y.S. Jiang, X.G. Zhang, X.X. Lu, Y.T. He, Opt. Express 17, 8719 (2009)

    Article  ADS  Google Scholar 

  26. X.M. Lu, Y.S. Jiang, X.G. Zhang, X. Wang, N. Spinelli, J. Quant. Spectrosc. Radiat. Transf. 112, 320 (2011)

    Article  ADS  Google Scholar 

  27. S. Garbarino, A. Sorrentino, A.M. Massone, A. Sannino, A. Boselli, X. Wang, N. Spinelli, M. Piana, Opt. Express 24, 21497 (2016)

    Article  ADS  Google Scholar 

  28. X. Cao, Z. Wang, P. Tian, J. Wang, L. Zhang, X. Quan, J. Quant. Spectrosc. Radiat. Transf. 122, 150 (2013)

    Article  ADS  Google Scholar 

  29. W. Gong, W. Wang, F.Y. Mao, J.Y. Zhang, Opt. Commun. 349, 145 (2015)

    Article  ADS  Google Scholar 

  30. C.W. Chiang, S.K. Das, J.B. Nee, J. Quant. Spectrosc. Radiat. Transf. 109, 1187 (2008)

    Article  ADS  Google Scholar 

  31. Y. Sasano, H. Nakane, Appl. Opt. 23, 11_1–11_3 (1984)

    Article  Google Scholar 

  32. W. Wang, W. Gong, F.Y. Mao, Z.X. Pan, B.M. Liu, Int. J. Environ. Res. Public Health 13, 508 (2016)

    Article  Google Scholar 

  33. P.W. Chan, Remote Sens. 2, 2127 (2010)

    Article  ADS  Google Scholar 

  34. M.J. Er, S.Q. Wu, J.W. Lu, H.L. Toh, IEEE Trans. Neural Netw. 13, 697 (2002)

    Article  Google Scholar 

  35. R. Yang, P.V. Er, Z.D. Wang, K.K. Tan, Neurocomputing. 199, 31 (2016)

    Article  Google Scholar 

  36. R. Yang, K.K. Tan, A. Tay, S.N. Huang, J. Sun, J. Fuh, Y.S. Wong, C.S. Teo, Z.D. Wang, Neural Comput. Appl. 28, 1235 (2017)

    Article  Google Scholar 

  37. J.H. Chang, L.Y. Zhu, H.X. Li, F. Xu, B.G. Liu, Z.B. Yang, Opt. Commun. 407, 290 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (61875089,11374161); the Primary Research & Development Plan of Jiangsu Province, China (BE2016756); the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China (1081080015001), the Top-notch Academic Programs Project of Jiangsu Higher Education Institutions, China (1181081501003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianhua Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Chang, J., Xu, F. et al. An RBF neural network approach for retrieving atmospheric extinction coefficients based on lidar measurements. Appl. Phys. B 124, 184 (2018). https://doi.org/10.1007/s00340-018-7055-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7055-1

Navigation