Skip to main content
Log in

Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A new kind beam called the random electromagnetic multi-Gaussian Schell-model (REMGSM) vortex beam has been introduced. Based on the Huygens–Fresnel principle, the elements of the cross-spectral density matrix of the REMGSM vortex beam propagation in oceanic turbulence have been derived. The average intensity and spectral degree of polarization properties of the REMGSM vortex beam propagating in oceanic turbulence are illustrated and analyzed using numerical examples. The results show that the REMGSM vortex beam propagating in stronger oceanic turbulence will evolve into flat-topped beam and Gaussian-like beam more rapidly as the propagation distance increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V.V. Nikishov, V.I. Nikishov, Spectrum of turbulent fluctuations of the sea-water refraction index. Int. J. Fluid Mech. Res. 27, 82–98 (2010)

    Article  MathSciNet  Google Scholar 

  2. O. Korotkova, N. Farwell, Effect of oceanic turbulence on polarization of stochastic beams. Opt. Commun. 284, 1740–1746 (2011)

    Article  ADS  Google Scholar 

  3. M.M. Tang, D.M. Zhao, Propagation of radially polarized beams in the oceanic turbulence. Appl. Phys. B-Lasers O 111, 665–670 (2013)

    Article  ADS  Google Scholar 

  4. J. Xu, D.M. Zhao, Propagation of a stochastic electromagnetic vortex beam in the oceanic turbulence. Opt. Laser Technol. 57, 189–193 (2014)

    Article  ADS  Google Scholar 

  5. Y. Zhou, Q. Chen, D.M. Zhao, Propagation of astigmatic stochastic electromagnetic beams in oceanic turbulence. Appl. Phys. B-Lasers O 114, 475–482 (2014)

    Article  ADS  Google Scholar 

  6. Y.P. Huang, B. Zhang, Z.H. Gao, G.P. Zhao, Z.C. Duan, Evolution behavior of Gaussian Schell-model vortex beams propagating through oceanic turbulence. Opt. Express 22, 17723–17734 (2014)

    Article  ADS  Google Scholar 

  7. D.J. Liu, Y.C. Wang, H.M. Yin, Evolution properties of partially coherent flat-topped vortex hollow beam in oceanic turbulence. Appl. Opt. 54, 10510–10516 (2015)

    Article  ADS  Google Scholar 

  8. D. Liu, Y. Wang, G. Wang, X. Luo, H. Yin, Propagation properties of partially coherent four-petal Gaussian vortex beams in oceanic turbulence. Laser Phys. 27, 016001 (2017)

    Article  ADS  Google Scholar 

  9. D.J. Liu, L. Chen, Y.C. Wang, G.Q. Wang, H.M. Yin, Average intensity properties of flat-topped vortex hollow beam propagating through oceanic turbulence. Optik 127, 6961–6969 (2016)

    Article  ADS  Google Scholar 

  10. D. Liu, H. Yin, G. Wang, Y. Wang, Propagation of partially coherent Lorentz–Gauss vortex beam through oceanic turbulence. Appl. Opt. 56, 8785–8792 (2017)

    Article  ADS  Google Scholar 

  11. Y.P. Huang, P. Huang, F.H. Wang, G.P. Zhao, A.P. Zeng, The influence of oceanic turbulence on the beam quality parameters of partially coherent Hermite-Gaussian linear array beams. Opt. Commun. 336, 146–152 (2015)

    Article  ADS  Google Scholar 

  12. L. Lu, Z.Q. Wang, J.H. Zhang, P.F. Zhang, C.H. Qiao, C.Y. Fan, X.L. Ji, Average intensity of M x N Gaussian array beams in oceanic turbulence. Appl. Opt. 54, 7500–7507 (2015)

    Article  ADS  Google Scholar 

  13. M.M. Tang, D.M. Zhao, Regions of spreading of Gaussian array beams propagating through oceanic turbulence. Appl. Opt. 54, 3407–3411 (2015)

    Article  ADS  Google Scholar 

  14. L. Lu, P.F. Zhang, C.Y. Fan, C.H. Qiao, Influence of oceanic turbulence on propagation of a radial Gaussian beam array. Opt. Express 23, 2827–2836 (2015)

    Article  ADS  Google Scholar 

  15. M. Yousefi, F.D. Kashani, A. Mashal, Analyzing the average intensity distribution and beam width evolution of phase-locked partially coherent radial flat-topped array laser beams in oceanic turbulence. Laser Phys. 27, 026202 (2017)

    Article  ADS  Google Scholar 

  16. D. Liu, Y. Wang, Evolution properties of a radial phased-locked partially coherent Lorentz-Gauss array beam in oceanic turbulence. Opt. Laser Technol. 103, 33–41 (2018)

    Article  ADS  Google Scholar 

  17. Y. Baykal, Fourth-order mutual coherence function in oceanic turbulence. Appl. Opt. 55, 2976–2979 (2016)

    Article  ADS  Google Scholar 

  18. Y. Baykal, Higher order mode laser beam intensity fluctuations in strong oceanic turbulence. Opt. Commun. 390, 72–75 (2017)

    Article  ADS  Google Scholar 

  19. Y.M. Dong, L.N. Guo, C.H. Liang, F. Wang, Y.J. Cai, Statistical properties of a partially coherent cylindrical vector beam in oceanic turbulence. J. Opt. Soc. Am. A 32, 894–901 (2015)

    Article  ADS  Google Scholar 

  20. D.J. Liu, Y.C. Wang, G.Q. Wang, H.M. Yin, J.R. Wang, The influence of oceanic turbulence on the spectral properties of chirped Gaussian pulsed beam. Opt. Laser Technol. 82, 76–81 (2016)

    Article  ADS  Google Scholar 

  21. D.J. Liu, Y.C. Wang, Average intensity of a Lorentz beam in oceanic turbulence. Optik—Int. J. Light Electron Opt. 144, 76–85 (2017)

    Article  Google Scholar 

  22. D. Liu, Y. Wang, X. Luo, G. Wang, H. Yin, Evolution properties of partially coherent four-petal Gaussian beams in oceanic turbulence. J. Mod. Opt. 64, 1579–1587 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  23. D. Liu, G. Wang, Y. Wang, Average intensity and coherence properties of a partially coherent Lorentz-Gauss beam propagating through oceanic turbulence. Opt. Laser Technol. 98, 309–317 (2018)

    Article  ADS  Google Scholar 

  24. H.D.A. Jeffrey, Handbook of Mathematical Formulas and Integrals, 4th edn. (Academic Press Inc, Cambridge, 2008)

    MATH  Google Scholar 

  25. E. Wolf, Unified theory of coherence and polarization of random electromagnetic beams. Phys. Lett. A 312, 263–267 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  26. M. Tang, D. Zhao, Propagation of multi-Gaussian Schell-model vortex beams in isotropic random media. Opt. Express 23, 32766–32776 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (11604038, 11404048), Natural Science Foundation of Liaoning Province (201602062, 201602061) and the Fundamental Research Funds for the Central Universities (3132018235, 3132018236).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dajun Liu or Yaochuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Wang, Y. Properties of a random electromagnetic multi-Gaussian Schell-model vortex beam in oceanic turbulence. Appl. Phys. B 124, 176 (2018). https://doi.org/10.1007/s00340-018-7048-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7048-0

Navigation