Skip to main content
Log in

Expanding up to far-infrared filamentation-induced supercontinuum spanning in chalcogenide glasses

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report on far-infrared filament-induced supercontinuum obtained with three chalcogenide glasses. The introduction of more polarizable elements (Se instead of S and Te instead of S and Se) into the glasses increases their non-linearity and transmission window and also shifts gradually corresponding zero-dispersion wavelength in the infrared region. Overall chalcogenide glasses were pumped with 65-fs pulses at the optimal wavelength with respect to supercontinuum extension. An infrared spanning reaching the 16-µm threshold is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.R. Alfano, S.L. Shapiro, Emission in the region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24, 584–587 (1970)

    Article  ADS  Google Scholar 

  2. R. Osellame, G. Cerullo, R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials (Springer Science & Business Media, Berlin, 2012)

    Book  Google Scholar 

  3. M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durécu, D. Fleury, B. Moreau, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Théberge, M. Chateauneuf, J. Dubois, Kilometer range filamentation: effects of filaments on transparent and non-transparent materials at long distances, in CLEO:2011—Laser Applications to Photonic Applications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper CThFF3

  4. S. Tzortzakis, L. Sudrie, M. Franco, B. Prade, A. Mysyrowicz, A. Couairon, L. Bergé, Self-guided propagation of ultrashort IR laser pulses in fused silica. Phys. Rev. Lett. 87, 213902 (2001)

    Article  ADS  Google Scholar 

  5. L. Bergé, S. Skupin, R. Nuter, J. Kasparian, J.-P. Wolf, Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70, 1633 (2007)

    Article  ADS  Google Scholar 

  6. Y.E. Geints, A.A. Zemlyanov, Numerical simulations of ultrashort laser pulse multifilamentation in fused silica: plasma channels statistics. J. Opt. 18, 015501 (2015)

    Article  ADS  Google Scholar 

  7. V.Q. Nguyen, J.S. Sanghera, I.D. Aggarwal, I.K. Lloyd, Physical properties of chalcogenide and chalcohalide glasses. J. Am. Ceram. Soc. 83, 55–859 (2000)

    Google Scholar 

  8. S. Danto, P. Houizot, C. Boussard-Pledel, X.H. Zhang, F. Smektala, J. Lucas, A family of far-infrared-transmitting glasses in the Ga–Ge–Te system for space applications. Adv. Funct. Mater. 16, 1847–1852 (2006)

    Article  Google Scholar 

  9. E. Zhu, B. Wu, X. Zhao, J. Wang, C. Lin, X. Wang, X. Li, P. Tian, Surface crystallization behavior and physical properties of (GeTe4)85(AgI)15 chalcogenide glass. Infrared Phys. Technol. 86, 135–138 (2017)

    Article  ADS  Google Scholar 

  10. A. Zakery, S.R. Elliott, Optical Nonlinearities in Chalcogenide Glasses and Their Applications (Springer, Berlin, 2007)

    Google Scholar 

  11. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5, 141–148 (2011)

    Article  ADS  Google Scholar 

  12. J. Hu, J. Meyer, K. Richardson, L. Shah, Feature issue introduction: mid-IR photonic materials. Opt. Mater. Express 3, 1571–1575 (2013)

    Article  ADS  Google Scholar 

  13. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu, Integrated flexible chalcogenide glass photonic devices. Nat. Photonics 8, 643–649 (2014)

    Article  ADS  Google Scholar 

  14. Z. Zhao, B. Wu, X. Wang, Z. Pan, Z. Liu, P. Zhang, X. Shen, Q. Nie, S. Dai, R.C. Wang, Mid-infrared supercontinuum covering 2.0–16 µm in a low-loss telluride single-mode fiber. Laser Photonics Rev. 11, 1770023 (2017)

    Article  ADS  Google Scholar 

  15. V.S. Shiryaev, M.F. Churbanov, Recent advances in preparation of high-purity chalcogenide glasses for mid-IR photonics. J. NonCryst. Solids 475, 1–9 (2017)

    Article  ADS  Google Scholar 

  16. V.S. Shiryaev, M.F. Churbanov, Preparation of high-purity chalcogenide glasses, in Chalcogenide Glasses (Elsevier, 2014)

  17. O. Mouawad, Infrared Supercontinuum Generation and Aging Challenges in Sulfur-Based Chalcogenide Glasses Suspended Core Highly Non Linear Optical Fibers (Université de Bourgogne, Dijon, 2014)

    Google Scholar 

  18. M. Rozé, L. Calvez, J. Rollin, P. Gallais, J. Lonnoy, S. Ollivier, M. Guilloux-Viry, X.-H. Zhang, Optical properties of free arsenic and broadband infrared chalcogenide glass. Appl. Phys. A 98, 97 (2009)

    Article  ADS  Google Scholar 

  19. J. Troles, V. Shiryaev, M. Churbanov, P. Houizot, L. Brilland, F. Desevedavy, F. Charpentier, T. Pain, G. Snopatin, J.L. Adam, GeSe4 glass fibres with low optical losses in the mid-IR. Opt. Mater. 32, 212–215 (2009)

    Article  ADS  Google Scholar 

  20. Y.D. West, T. Schweizer, D.J. Brady, D.W. Hewak, Gallium lanthanum sulphide fibers for infrared transmission. Fiber Integr. Opt. 19, 229–250 (2000)

    Article  ADS  Google Scholar 

  21. Y. Kawamoto, S. Tsuchihashi, Glass-forming regions and structure of glasses in the system Ge–S. J. Am. Ceram. Soc. 52, 626–627 (1969)

    Article  Google Scholar 

  22. O. Mouawad, S. Kedenburg, T. Steinle, A. Steinmann, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, H. Giessen, F. Smektala, Experimental long-term survey of mid-infrared supercontinuum source based on As2S3 suspended-core fibers. Appl. Phys. B 122, 177 (2016)

    Article  ADS  Google Scholar 

  23. I. Savelli, O. Mouawad, J. Fatome, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, P.Y. Bony, H. Kawashima, W. Gao, T. Kohoutek, T. Suzuki, Y. Ohishi, F. Smektala, Mid-infrared 2000-nm bandwidth supercontinuum generation in suspended-core microstructured Sulfide and Tellurite optical fibers. Opt. Express 20, 27083–27093 (2012)

    Article  ADS  Google Scholar 

  24. S. Than Singh, T. Umesh Kumar, S. Ravindra Kumar, Rib waveguide in Ga–Sb–S chalcogenide glass for on-chip mid-IR supercontinuum sources: design and analysis. J. Appl. Phys. 122, 053104 (2017)

    Article  Google Scholar 

  25. M.R. Karim, B.M.A. Rahman, Numerical investigation of mid-infrared supercontinuum generation in GeAsSe based chalcogenide photonic crystal fiber using low peak power. Appl. Phys. Res. 8, 29–37 (2016)

    Article  Google Scholar 

  26. O. Mouawad, F. Amrani, B. Kibler, J. Picot-Clémente, C. Strutynski, J. Fatome, F. Désévédavy, G. Gadret, J.C. Jules, O. Heintz, E. Lesniewska, F. Smektala, Impact of optical and structural aging in As2S3 microstructured optical fibers on mid-infrared supercontinuum generation. Opt. Express 22, 23912–23919 (2014)

    Article  ADS  Google Scholar 

  27. Y. Yu, X. Gai, P. Ma, D.-Y. Choi, Z. Yang, R. Wang, S. Debbarma, S.J. Madden, B. Luther-Davies, A broadband, quasi-continuous, mid-infrared supercontinuum generated in a chalcogenide glass waveguide. Laser Photonics Rev. 8, 792–798 (2014)

    Article  ADS  Google Scholar 

  28. M. Liao, W. Gao, T. Cheng, Z. Duan, X. Xue, H. Kawashima, T. Suzuki, Y. Ohishi, Ultrabroad supercontinuum generation through filamentation in tellurite glass. Laser Phys. Lett. 10, 036002 (2013)

    Article  ADS  Google Scholar 

  29. A.A. Wilhelm, C. Boussard-Pledel, J.Q. Coulombier, B. Lucas, Bureau, P. Lucas, Development of far-infrared-transmitting Te based glasses suitable for carbon dioxide detection and space optics. Adv. Mater. 19, 3796–3800 (2007)

    Article  Google Scholar 

  30. M. Liao, W. Gao, T. Cheng, X. Xue, Z. Duan, D. Deng, H. Kawashima, T. Suzuki, O. Yasutake, Five-octave-spanning supercontinuum generation in fluoride glass. Appl. Phys. Express 6, 032503 (2013)

    Article  ADS  Google Scholar 

  31. V. Kokorina, Glasses for Infrared Optics (CRC Press, Boca Raton, 1996)

    Google Scholar 

  32. R. Lin, F. Chen, X. Zhang, Y. Huang, B. Song, S. Dai, X. Zhang, W. Ji, Mid-infrared optical properties of chalcogenide glasses within tin-antimony-selenium ternary system. Opt. Express 25, 25674–25688 (2016)

    Article  ADS  Google Scholar 

  33. S. Cui, C. Boussard-Plédel, J. Lucas, B. Bureau, Te-based glass fiber for far-infrared biochemical sensing up to 16 µm. Opt. Express 22, 21253–21262 (2014)

    Article  ADS  Google Scholar 

  34. P. Lucas, B. Bureau, Selenide glass fibers for biochemical infrared sensing, in Applications of Chalcogenides: S, Se, and Te, ed. by G.K. Ahluwalia (Springer International Publishing, Cham, 2016), pp. 285–319

    Google Scholar 

  35. L.G. Aio, A.M. Efimov, V.F. Kokorina, Refractive index of chalcogenide glasses over a wide range of compositions. J. NonCryst. Solids 27, 299–307 (1978)

    Article  ADS  Google Scholar 

  36. S. Zhang, X. Zhang, M. Barillot, L. Calvez, C. Boussard, B. Bureau, J. Lucas, V. Kirschner, G. Parent, Purification of Te75Ga10Ge15 glass for far infrared transmitting optics for space application. Opt. Mater. 32, 1055–1059 (2010)

    Article  ADS  Google Scholar 

  37. Q. Guanshi, Y. Xin, K. Chihiro, L. Meisong, C. Chitrarekha, S. Takenobu, O. Yasutake, Ultrabroadband supercontinuum generation from ultraviolet to 6.28 µm in a fluoride fiber. Appl. Phys. Lett. 95, 161103 (2009)

    Article  Google Scholar 

  38. J.H. Marburger, Self-focusing: theory. Prog. Quantum Electron. 4, 35–110 (1975)

    Article  ADS  Google Scholar 

  39. O. Mouawad, P. Béjot, F. Billard, P. Mathey, B. Kibler, F. Désévédavy, G. Gadret, J.C. Jules, O. Faucher, F. Smektala, Mid-infrared filamentation-induced supercontinuum in As–S and an As-free Ge–S counterpart chalcogenide glasses. Appl. Phys. B 121, 433–438 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Conseil Régional de Bourgogne and the FEDER (Fonds Européen de Développement Régional) through the Photcom PARI program. This project has been performed in cooperation with the Labex ACTION program (contract ANR-11-LABX-0001-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Smektala.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouawad, O., Béjot, P., Mathey, P. et al. Expanding up to far-infrared filamentation-induced supercontinuum spanning in chalcogenide glasses. Appl. Phys. B 124, 182 (2018). https://doi.org/10.1007/s00340-018-7041-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7041-7

Navigation