Skip to main content
Log in

Assessment on the deviation from an ideal Gaussian beam for a real laser beam by Fresnel–Huygens phase-retrieval method

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The deviation of a real laser beam from an ideal Gaussian beam can be ascribed either to the non-Gaussianity of the intensity profile or to the non-planarity of the wave front at the beam waist. We demonstrate a method to differentiate these two causes. The contribution of the phase distortion at the beam waist to the deviation from an ideal Gaussian beam can be assessed from the change in modal spectrum when the wave front at the beam waist is replaced by a flat plane. The crucial information about the phase-profile function of the optical field at the beam waist for mode decomposition was calculated from two intensity profiles for different cross-sections around the beam waist using a convergent iterative algorithm based on the Fresnel–Huygens principle. Using a HeNe laser with its beam close to an ideal Gaussian beam for test, we found that both effects have comparable contributions to the deviation from an ideal Gaussian beam.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.M. Chen, Experimental isolation and measurement of laser-induced effects: thermal lensing, turbidity and the optical Kerr effect. Opt. Las. Technol. 28, 615–620 (1996)

    Article  ADS  Google Scholar 

  2. Z.R. Mei, D.M. Zhao, Generalized beam propagation factor of hard-edged circular apertured diffracted Bessel–Gaussian beams. Opt. Las. Technol. 39, 1389–1394 (2007)

    Article  ADS  Google Scholar 

  3. H.A. Haus, Waves and fields in optoelectronics (Prentice-Hall Inc., Upper Saddle River, 1984)

    Google Scholar 

  4. B.C. Platt, R. Shack, History and principles of Shack–Hartmann wavefront sensing. J. Refract. Surg. 17, S573–S577 (2001)

    Google Scholar 

  5. B. Pathak, B.R. Boruah, Improved wavefront reconstruction algorithm for Shack–Hartmann type wavefront sensors. J. Opt. 16, 055403 (2014)

    Article  ADS  Google Scholar 

  6. R.G. Lane, M. Tallon, Wave-front reconstruction using a Shack–Hartmann sensor. Appl. Opt. 32, 6902–6908 (1992)

    Article  ADS  Google Scholar 

  7. M. Paurisse, L. Lévèque, M. Hanna, F. Druon, P. Georges, Complete measurement of fiber modal content by wavefront analysis. Opt. Express 20, 4074–4084 (2012)

    Article  ADS  Google Scholar 

  8. R.W. Gerchberg, W.O. Saxton, A practical algorithm for the determination of the phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)

    Google Scholar 

  9. S. Matsuoka, K. Yamakawa, Wavefront reconstruction from intensity measurements using Fresnel phase retrieval method. Jpn. J. Appl. Phys. 38, L1183–L1185 (1999)

    Article  ADS  Google Scholar 

  10. S. Matsuoka, K. Yamakawa, Wave-front measurements of terawatt-class ultrashort laser pulses by the Fresnel phase-retrieval method. J. Opt. Soc. Am. B 17, 663–667 (2000)

    Article  ADS  Google Scholar 

  11. P.K. Yang, W.T. Shih, Fast convergent conditions of an iterative method for retrieving the Kerr-effect-aberrated phase profile of a laser beam. Chin. J. Phys. 48, 381–391 (2010)

    Google Scholar 

  12. G. Pedrini, W. Osten, Y. Zhang, Wave-front reconstruction from a sequence of interferograms recorded at different planes. Opt. Lett. 30, 833–835 (2005)

    Article  ADS  Google Scholar 

  13. S. Grilli, P. Ferraro, S. De Nicola, A. Finizio, G. Pierattini, R. Meucci, Whole optical wavefields reconstruction by digital holography. Opt. Express 9, 294–302 (2001)

    Article  ADS  Google Scholar 

  14. S. De Nicola, P. Ferraro, A. Finizio, G. Pierattini, Wave front reconstruction of Fresnel off-axis holograms with compensation of aberrations by means of phase-shifting digital holography. Opt. Laser Eng. 37, 331–340 (2001)

    Article  Google Scholar 

  15. L. Huang, S. Guo, J. Leng, H. Lü, P. Zhou, X. Cheng, Real-time mode decomposition for few-mode fiber based on numerical method. Opt. Express 23, 4620–4629 (2015)

    Article  ADS  Google Scholar 

  16. G. R. Fowles, Introduction to modern optics, 2nd ed. (Holt, Rinehart and Winston, Inc., New York, 1975)

    Google Scholar 

  17. H. Weber, Some historical and technical aspects of beam quality. Opt. Quant. Electron. 24, 861–864 (1992)

    Article  Google Scholar 

  18. A.E. Siegman, Defining, measuring, and optimizing laser beam quality, Proc. SPIE 1868, 2 (1993)

    Article  ADS  Google Scholar 

  19. ISO11146, Lasers and laser-related equipment—test methods for laser beam widths, divergence angles and beam propagation ratios Part 1–3

  20. S. Pan, J. Ma, R. Zhu, T. Ba, C. Zou, F. Chen, J. Dou, C. Wei, W. Zhou, Real-time complex amplitude reconstruction method for beam quality M 2 factor measurement. Opt. Express 25, 20142 (2017)

    Article  Google Scholar 

  21. S.S. Hashemi, S.G. Sabouri, A. Khorsandi, In situ measurement of laser beam quality. Appl. Phys. B 123, 233 (2017)

    Article  ADS  Google Scholar 

  22. T. Kaiser, D. Flamm, S. Schröter, M. Duparré, Complete modal decomposition for optical fiber using CGH-based correlation filters. Opt. Express 17, 9347–9356 (2009)

    Article  ADS  Google Scholar 

  23. D. Flamm, C. Schulze, R. Brüning, O.A. Schmidt, T. Kaiser, S. Schröter, M. Duparré, Fast M 2 measurement for fiber beams based on modal analysis. Appl. Opt. 51, 987–993 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ministry of Science and Technology of Taiwan, Republic of China, under Grants MOST 104-2221-E-159-009 and MOST 105-2632-E-159-001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pao-Keng Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, PK., Liu, JY. Assessment on the deviation from an ideal Gaussian beam for a real laser beam by Fresnel–Huygens phase-retrieval method. Appl. Phys. B 124, 150 (2018). https://doi.org/10.1007/s00340-018-7016-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7016-8

Navigation