Skip to main content
Log in

Fabry–Perot etalon-based ultraviolet high-spectral-resolution lidar for tropospheric temperature and aerosol measurement

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The 355-nm ultraviolet high-spectral-resolution technique based on a triple Fabry–Perot etalon (FPE) for simultaneous high-accuracy measurement of tropospheric temperature and aerosol is proposed. The detection principle is analyzed and the whole structure of lidar system is designed. The parameters of the triple FPE-labeled FPE-1, FPE-2 and FPE-L are optimized in detail. FPE-1, FPE-2 and FPE-L are used for measuring aerosol and separating Rayleigh signal from Mie signal, for measuring temperature and for frequency locking, respectively. The performance simulation of the proposed lidar system showed that the measurement errors of temperature and backscatter ratio are below 2 K and 0.17% at 8 km and below 4 K and 0.39% at 12 km with 30-m range resolution and 1-min integration time using a 48 mJ pulse energy and 20 Hz repetition rate laser and a 25-cm telescope. The influence of Mie signal contamination on temperature measurement mainly depends on the relative Mie rejection factors of the two channels for temperature measurement, which are 4.2 and 10.4% of our proposed system at 270 K and the corresponding temperature deviation is 1 K with backscatter ratio of 10 and Rayleigh photoelectrons of 105. Assuming the same number of total photoelectrons received, the backscatter ratio and temperature measurement accuracies of our proposed lidar are 4.16–22.58 and 2.07–2.76 times, respectively, that of the traditional dual-pass multi-cavity-FPE-based HSRL at temperature of 220–290 K and backscatter ratio of 1–10.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.D. Klett, Stable analytical inversion solution for processing lidar returns. Appl. Opt. 20, 211–220 (1981)

    Article  ADS  Google Scholar 

  2. F.G. Fernald, Analysis of atmospheric lidar observations: some comments. Appl. Opt. 23, 652–655 (1984)

    Article  ADS  Google Scholar 

  3. D. Hua, X. Song, Advances in lidar remote sensing techniques. Infrared Laser Eng. 37, 26–32 (2008)

    MathSciNet  Google Scholar 

  4. N. Sugimoto, I. Matsui, Z. Liu, A. Shimizu, I. Tamamushi, K. Asai, Observation of aerosols and clouds using a two-wavelength polarization lidar during the Nauru99 experiment. Sea Sky 76, 93–98 (2000)

    Google Scholar 

  5. G. Bo, D. Liu, B. Wang, D. Wu, Z. Zhong, Two-wavelength polarization airborne lidar for observation of aerosol and cloud. Chin. J. Lasers 39, 203–208 (2012)

    Google Scholar 

  6. J.T. Sroga, E.W. Eloranta, S.T. Shipley, F.L. Roesler, P.J. Tryon, High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis. Appl. Opt. 22, 3725–3732 (1983)

    Article  ADS  Google Scholar 

  7. C.Y. She, R.J. Alvarez II, L.M. Caldwell, D.A. Krueger, High-spectral-resolution Rayleigh–Mie lidar measurement of vertical aerosol and atmospheric profiles., Appl. Phys. B 55, 541–543 (1992)

    Article  Google Scholar 

  8. J.E. Kalshoven Jr, C.L. Korb, G.K. Schwemmer, M. Dombrowski, Laser remote sensing of atmospheric temperature by observing resonant absorption of oxygen. Appl. Opt. 20, 1967–1971 (1981)

    Article  ADS  Google Scholar 

  9. F.A. Theopold, J. Bösenberg, Differential absorption lidar measurements of atmospheric temperature profiles: theory and experiment. J. Atmos. Ocean. Technol. 10, 165–179 (1993)

    Article  ADS  Google Scholar 

  10. V. Wulfmeyer, Ground-based differential absorption lidar for water-vapor and temperature profiling: development and specifications of a high-performance laser transmitter. Appl. Opt. 37, 3804–3824 (1998)

    Article  ADS  Google Scholar 

  11. J. Bösenberg, Ground-based differential absorption lidar for water-vapor and temperature profiling: methodology. Appl. Opt. 37, 3845–3860 (1998)

    Article  ADS  Google Scholar 

  12. A. Hauchecorne, M.L. Chanin, Density and temperature profiles obtained by lidar between 35 and 70 km. Geophys. Res. Lett. 7, 565–568 (1980)

    Article  ADS  Google Scholar 

  13. W.N. Chen, C.C. Tsao, J.B. Nee, Rayleigh lidar temperature measurements in the upper troposphere and lower stratosphere. J. Atmos. Sol. Terr. Phys. 66, 39–49 (2004)

    Article  ADS  Google Scholar 

  14. L. Bu, J. Guo, L. Tian, X. Huang, B. Liu, Y. Feng, Rayleigh-Raman lidar used for atmospheric temperature profile measurement. High Power Laser Part. Beams 7, 1449–1452 (2010)

    Google Scholar 

  15. G. Fiocco, G. Beneditti-Machelangeli, K. Maschberger, E. Madonna, Measurement of temperature and aerosol to molecule ratio in the troposphere by optical radar. Nat. Phys. Sci. 229, 78–79 (1971)

    Article  ADS  Google Scholar 

  16. B. Witschas, C. Lemmerz, O. Reitebuch, Daytime measurements of atmospheric temperature profiles (2–15 km) by lidar utilizing Rayleigh–Brillouin scattering. Opt. Lett. 39, 1972–1975 (2014)

    Article  ADS  Google Scholar 

  17. R.L. Schwiesow, L. Lading, Temperature profiling by Rayleigh scattering lidar. Appl. Opt. 20, 1972–1979 (1981)

    Article  ADS  Google Scholar 

  18. H. Shimizu, S.A. Lee, C.Y. She, High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. Appl. Opt. 22, 1373–1381 (1983)

    Article  ADS  Google Scholar 

  19. H. Shimizu, K. Nogachi, C.Y. She, Atmospheric temperature measurement by a high spectral resolution lidar. Appl. Opt. 25, 1460–1466 (1986)

    Article  ADS  Google Scholar 

  20. C.Y. She, R.J. Alvarez, L.M. Caldwell, D.A. Krueger, High spectral resolution Rayleigh–Mie lidar measurement of aerosol and atmospheric profiles. Opt. Lett. 17, 541–543 (1992)

    Article  ADS  Google Scholar 

  21. D.A. Krueger, L.M. Caldwell, R.J. Alvarez II, and C.Y. She, Self-consistent method for determining vertical profiles of aerosol and atmospheric properties using a high spectral resolution Rayleigh–Mie lidar. J. Atmos. Ocean. Technol. 10, 533–545 (1993)

    Article  ADS  Google Scholar 

  22. C.A. Tepley, S.I. Sargoytchev, R. Rojas, The Doppler Rayleigh lidar system at Arecibo. IEEE Trans. Geosci. Remote Sens. 31, 36–47 (1993)

    Article  ADS  Google Scholar 

  23. D. Hua, T. Kobayashi, Ultraviolet Rayleigh–Mie lidar by use of a multicavity Fabry–Perot filter for accurate temperature profiling of the troposphere. Appl. Opt. 44, 6474–6478 (2005)

    Article  ADS  Google Scholar 

  24. D. Hua, M. Uchida, T. Kobayashi, UV Rayleigh–Mie lidar with Mie scattering correction by Fabry–Perot etalon for temperature profiling of the troposphere. Appl. Opt. 44, 1305–1314 (2005)

    Article  ADS  Google Scholar 

  25. H. Xia, X. Dou, M. Shangguan, R. Zhao, D. Sun, C. Wang, J. Qiu, Z. Shu, X. Xue, Y. Han, Y. Han, Stratospheric temperature measurement with scanning Fabry–Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar. Opt. Express 22, 21775–21789 (2014)

    Article  ADS  Google Scholar 

  26. Z.S. Liu, D.C. Bi, X.Q. Song, J.B. Xia, R.Z. Li, Z.J. Wang, C.Y. She, Iodine-filter-based high spectral resolution lidar for atmospheric temperature measurements. Opt. Lett. 34, 2712–2714 (2009)

    Article  ADS  Google Scholar 

  27. R.J. Alvarez, Measurement of tropospheric temperature and aerosol extinction using high spectral resolution lidar. Ph.D. Thesis Colorado State Univ., Fort Collins, (1991)

  28. G. Vaughan, D.P. Wareing, S.J. Pepler, L. Thomas, V. Mitev, Atmospheric temperature measurements made by rotational Raman scattering. Appl. Opt. 32, 2758–2764 (1993)

    Article  ADS  Google Scholar 

  29. N. Nedeljkovic, A. Hauchecorne, M.L. Chanin, Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km. IEEE Trans. Geosci. Remote Sens. 31, 90–101 (1993)

    Article  ADS  Google Scholar 

  30. A. Behrendt, J. Reichardt, Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference filter based polychromator. Appl. Opt. 39, 1372–1378 (2000)

    Article  ADS  Google Scholar 

  31. A. Behrendt, T. Nakamura, M. Onishi, R. Baumgrat, T. Tsuda, Combined Raman lidar for the measurement of atmospheric temperature, water vapor, particle extinction coefficient, and particle backscatter coefficient. Appl. Opt. 41, 7657–7666 (2002)

    Article  ADS  Google Scholar 

  32. Y. Arshinov, S. Bobrovnikov, I. Serikov, A. Ansmann, U. Wandinger, D. Althausen, I. Mattis, D. Müller, Daytime operation of a pure rotational Raman lidar by use of a Fabry–Perot interferometer. Appl. Opt. 44, 3593–3603 (2005)

    Article  ADS  Google Scholar 

  33. S. Wang, J. Su, P. Zhao, K. Cao, S. Hu, H. Wei, K. Tan, H. Hu, A pure rotational Raman-lidar based on three-stage Fabry–Perot etalons for monitoring atmospheric temperature. Acta Phys. Sin. 57, 3941–3946 (2008)

    Google Scholar 

  34. G. Tenti, C.D. Boley, R.C. Desai, On the kinetic model description of Rayleigh–Brillouin scattering from molecular gases. Can. J. Phys. 52, 285–290 (1974)

    Article  ADS  Google Scholar 

  35. M.J. Mcgill, J.D. Spinhirne, Comparison of two direct-detection Doppler lidar techniques. Opt. Eng. 37, 2675–2686 (1998)

    Article  ADS  Google Scholar 

  36. F. Shen, Y. Xia, A. Yu, C. Liu, Transmission spectral characteristics of F–P interferometer under multi-factors. Infrared Laser Eng 6, 1800–1805 (2015)

    Google Scholar 

  37. G.J. Sloggett, Fringe broadening in Fabry–Perot interferometers. Appl. Opt. 23, 2427–2432 (1984)

    Article  ADS  Google Scholar 

  38. J.A. Mckay, D.J. Rees, High-performance Fabry–Perot etalon mount for spaceflight. Opt. Eng. 39, 315–319 (2000)

    Article  ADS  Google Scholar 

  39. X. Xu, N. Weng, L. Xiao, G. Sun, Detecting the vertical velocity in the atmosphere boundary layer in Hefei using Sodar. J. Atmos. Environ. Opt. 5, 101–104 (2006)

    Google Scholar 

  40. A. Souprayen, A. Garnier, A. Hertzog, J. Hauchecorne, Porteneuve, Rayleigh–Mie Doppler wind lidar for atmospheric measurements. I. Instrumental setup, validation, and first climatological results. Appl. Opt. 38, 2410–2421 (1999)

    Article  ADS  Google Scholar 

  41. R.A. McClatchey, A.P. D’Agati, Atmospheric transmission of laser radiation. AFGL Report, No. TR-78-0029, USA (1978) p. 24

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province, China (BK20161316), the Open Research Fund of Key Laboratory of Atmospheric Composition and Optical Radiation, Chinese Academy of Sciences (2017), the Young Scientists Fund of the National Natural Science Foundation of China (51504214).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahua Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, F., Zhuang, P., Shi, W. et al. Fabry–Perot etalon-based ultraviolet high-spectral-resolution lidar for tropospheric temperature and aerosol measurement. Appl. Phys. B 124, 138 (2018). https://doi.org/10.1007/s00340-018-7003-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-7003-0

Navigation