Skip to main content
Log in

Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A set of high-resolution absorption spectrometers based on TDLAS was used to determine the impact of combustion-relevant gases on the pressure shift and broadening of H2O, CO2, C2H2 and CH4 absorption lines in the near-infrared spectral region. In particular, self- and foreign-broadening coefficients induced by CO2, N2, O2, air, C2H2 and CH4 were measured. The absorption lines under investigation are suitable to measure the respective species in typical combustion environments via laser absorption spectroscopy. Additionally, species-dependent self- and foreign-induced pressure shift coefficients were measured and compared to the literature. The experiments were performed in two specifically designed absorption cells over a wide pressure range from 5 to 180 kPa. Different sources of uncertainty were identified and quantified to achieve relative measurement uncertainties of 0.7–1.5% for broadening coefficients and 0.6–1.6% for pressure shift coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. IEA, World energy outlook (2016). https://doi.org/10.1787/weo-2016-en (ISBN: 9789264264946)

  2. H. Hao, Y. Geng, J. Sarkis, Energy 101, 121 (2016)

    Article  Google Scholar 

  3. R.K. Hanson, Proc. Combust. Inst. 33, 1, (2011)

    Article  Google Scholar 

  4. B. Peterson, E. Baum, B. Böhm, V. Sick, A. Dreizler, Proc. Combust. Inst. 35, 2923 (2015)

    Article  Google Scholar 

  5. D. Zabrodiec, L. Becker, J. Hees, A. Maßmeyer, M. Habermehl, O. Hatzfeld, A. Dreizler, R. Kneer, Combust. Sci. Technol. 189, 1751 (2017)

    Article  Google Scholar 

  6. E. Baum, B. Peterson, B. Böhm, A. Dreizler, Flow Turbul Combust 92, 269 (2014)

    Article  Google Scholar 

  7. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, Opt. Express 15, 15115 (2007)

    Article  ADS  Google Scholar 

  8. O. Witzel, A. Klein, C. Meffert, S. Wagner, S. Kaiser, C. Schulz, V. Ebert, Opt. Express 21, 19951 (2013)

    Article  ADS  Google Scholar 

  9. S. Bürkle, L. Biondo, C.-P. Ding, R. Honza, V. Ebert, B. Böhm, S. Wagner, In-Cylinder Temperature Measurements in a Motored IC Engine using TDLAS. Flow Turbul. Combust. (2018). https://doi.org/10.1007/s10494-017-9886-y

    Google Scholar 

  10. M.E. Webber, J. Wang, S.T. Sanders, D.S. Baer, R.K. Hanson, Proc. Combust. Inst. 28, 407 (2000)

    Article  Google Scholar 

  11. I.A. Schultz, C.S. Goldenstein, R. Mitchell Spearrin, J.B. Jeffries, R.K. Hanson, R.D. Rockwell, C.P. Goyne, J. Propuls. Power 30, 1595 (2014)

    Article  Google Scholar 

  12. S. Balusamy, M.M. Kamal, S.M. Lowe, B. Tian, Y. Gao, S. Hochgreb, Exp. Fluids 56, 1 (2015)

    Article  Google Scholar 

  13. A. Sepman, Y. Ögren, M. Gullberg, H. Wiinikka, Appl. Phys. B 122, 89 (2016)

    Article  Google Scholar 

  14. K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34, 3593 (2013)

    Article  Google Scholar 

  15. H. Teichert, T. Fernholz, V. Ebert, Appl. Opt. 42, 2043 (2003)

    Article  ADS  Google Scholar 

  16. K.L. Mackay, A. Chanda, G. Mackay, J.T. Pisano, T.D. Durbin, K. Crabbe, T. Smith, J. Appl. Spectrosc. 83, 627 (2016)

    Article  ADS  Google Scholar 

  17. S. Balusamy, A. Schmidt, S. Hochgreb, Exp. Fluids 54, 159 (2013)

    Article  Google Scholar 

  18. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132 (2017)

    Article  Google Scholar 

  19. I.E. Gordon, L.S. Rothman, C. Hill, R.V. Kochanov, Y. Tan, P.F. Bernath, M. Birk, V. Boudon, A. Campargue, K.V. Chance, B.J. Drouin, J.-M. Flaud, R.R. Gamache, J.T. Hodges, D. Jacquemart, V.I. Perevalov, A. Perrin, K.P. Shine, M.-A.H. Smith, J. Tennyson, G.C. Toon, H. Tran, V.G. Tyuterev, A. Barbe, A.G. Császár, V.M. Devi, T. Furtenbacher, J.J. Harrison, J.-M. Hartmann, A. Jolly, T.J. Johnson, T. Karman, I. Kleiner, A.A. Kyuberis, J. Loos, O.M. Lyulin, S.T. Massie, S.N. Mikhailenko, N. Moazzen-Ahmadi, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, O.L. Polyansky, M. Rey, M. Rotger, S.W. Sharpe, K. Sung, E. Starikova, S.A. Tashkun, J.V. Auwera, G. Wagner, J. Wilzewski, P. Wcisło, S. Yu, E.J. Zak, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)

    Article  ADS  Google Scholar 

  20. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139 (2010)

    Article  ADS  Google Scholar 

  21. J. Hees, D. Zabrodiec, A. Massmeyer, S. Pielsticker, B. Gövert, M. Habermehl, O. Hatzfeld, R. Kneer, Combust. Flame 172, 289 (2016)

    Article  Google Scholar 

  22. I. Glassman, Symp. (Int.) Combust. 22, 295 (1989)

    Article  Google Scholar 

  23. P. Lindstedt, Symp. (Int.) Combust. 27, 269 (1998)

    Article  Google Scholar 

  24. F. Stritzke, S. van der Kley, A. Feiling, A. Dreizler, S. Wagner, Opt. Express 25, 8180 (2017)

    Article  ADS  Google Scholar 

  25. J. Humlíček, J. Quant. Spectrosc. Radiat. Transf. 21, 309 (1979)

    Article  ADS  Google Scholar 

  26. A. Pogány, S. Wagner, O. Werhahn, V. Ebert, Appl. Spectrosc. 69, 257 (2015)

    Article  ADS  Google Scholar 

  27. R.S.M. Chrystie, E.F. Nasir, A. Farooq, Appl. Phys. B 120, 317 (2015)

    Article  ADS  Google Scholar 

  28. O. Diemel, J. Pareja, A. Dreizler, S. Wagner, Appl. Phys. B 123, 545 (2017)

    Article  Google Scholar 

  29. U. KC, E.F. Nasir, A. Farooq, Appl. Phys. B 120, 223 (2015)

    Article  ADS  Google Scholar 

  30. X. Zhou, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 81, 711 (2005)

    Article  ADS  Google Scholar 

  31. S. Schäfer, M. Mashni, J. Sneider, A. Miklós, P. Hess, H. Pitz, K.-U. Pleban, V. Ebert, Appl. Phys. B Lasers Opt. 66, 511 (1998)

    Article  ADS  Google Scholar 

  32. A. Pogány, A. Klein, V. Ebert, J. Quant. Spectrosc. Radiat. Transf. 165, 108 (2015)

    Article  ADS  Google Scholar 

  33. S. Bürkle, A. Dreizler, V. Ebert, S. Wagner, Fuel 212, 302 (2018)

    Article  Google Scholar 

  34. S. Bürkle, L.G. Becker, A. Dreizler, S. Wagner, Experimental investigation of the flue gas thermochemical composition of an oxy-fuel swirl burner. Fuel 231, 61–72 (2018). https://doi.org/10.1016/j.fuel.2018.05.039

    Article  Google Scholar 

  35. S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32, 839 (2009)

    Article  Google Scholar 

  36. G. Durry, V. Zeninari, B. Parvitte, T. Le barbu, F. Lefevre, J. Ovarlez, R.R. Gamache, J. Quant. Spectrosc. Radiat. Transf. 94, 387 (2005)

    Article  ADS  Google Scholar 

  37. R.A. Toth, Appl. Opt. 33, 4851 (1994)

    Article  ADS  Google Scholar 

  38. S. Moretti, Gianfrani, Ciurylo, J. Mol. Spectrosc. 205, 20 (2001)

    Article  ADS  Google Scholar 

  39. O. Witzel, V. Ebert, In-situ-Laserabsorptionsspektroskopie zur µs-schnellen Bestimmung von Spezieskonzentrationen und Temperaturen in Verbrennungsmotoren (Darmstadt 2013)

  40. S. Hunsmann, S. Wagner, H. Saathoff, O. Möhler, U. Schurath, V. Ebert, Messung der Temperaturabhängigkeit der Linienstärken und Druckverbreiterungskoeffizienten von H2O-Absorptionslinien im 1.4 μm-Band. VDI Berichte 1959, 149–164 (2006)

    Google Scholar 

  41. C. Camy-Peyret, J.M. Flaud, R.A. Toth, J. Mol. Spectrosc. 67, 117 (1977)

    Article  ADS  Google Scholar 

  42. R.A. Toth, J. Quant. Spectrosc. Radiat. Transf. 94, 51 (2005)

    Article  ADS  Google Scholar 

  43. I.V. Ptashnik, K.M. Smith, K.P. Shine, J. Mol. Spectrosc. 232, 186 (2005)

    Article  ADS  Google Scholar 

  44. R.A. Toth, L.R. Brown, C.E. Miller, V.M. Devi, D.C. Benner, J. Mol. Spectrosc. 239, 221 (2006)

    Article  ADS  Google Scholar 

  45. L. Régalia-Jarlot, V. Zéninari, B. Parvitte, A. Grossel, X. Thomas, P. von der Heyden, G. Durry, J. Quant. Spectrosc. Radiat. Transf. 101, 325 (2006)

    Article  ADS  Google Scholar 

  46. G. Casa, D.A. Parretta, A. Castrillo, R. Wehr, L. Gianfrani, J. Chem. Phys. 127, 84311 (2007)

    Article  Google Scholar 

  47. O.L. Polyansky, K. Bielska, M. Ghysels, L. Lodi, N.F. Zobov, J.T. Hodges, J. Tennyson, Phys. Rev. Lett. 114, 243001 (2015)

    Article  ADS  Google Scholar 

  48. R.A. Toth, C.E. Miller, V. Malathy Devi, D.C. Benner, L.R. Brown, J. Mol. Spectrosc. 246, 133 (2007)

    Article  ADS  Google Scholar 

  49. L. Rosenmann, J.M. Hartmann, M.Y. Perrin, J. Taine, Appl. Opt. 27, 3902 (1988)

    Article  ADS  Google Scholar 

  50. R. El Hachtouki, J.V. Auwera, J. Mol. Spectrosc. 216, 355 (2002)

    Article  ADS  Google Scholar 

  51. S.W. Arteaga, C.M. Bejger, J.L. Gerecke, J.L. Hardwick, Z.T. Martin, J. Mayo, E.A. McIlhattan, J.-M.F. Moreau, M.J. Pilkenton, M.J. Polston, B.T. Robertson, E.N. Wolf, J. Mol. Spectrosc. 243, 253 (2007)

    Article  ADS  Google Scholar 

  52. P. Minutolo, C. Corsi, F. D’Amato, M. de Rosa, Eur. Phys. J. D 17, 175 (2001)

    Article  ADS  Google Scholar 

  53. M. Gharavi, S.G. Buckley, J. Mol. Spectrosc. 229, 78 (2005)

    Article  ADS  Google Scholar 

  54. V. Zéninari, B. Parvitte, D. Courtois, V.A. Kapitanov, Y.N. Ponomarev, Appl. Phys. B 72, 953 (2001)

    Article  ADS  Google Scholar 

  55. G. Dufour, D. Hurtmans, A. Henry, A. Valentin, M. Lepère, J. Mol. Spectrosc. 221, 80 (2003)

    Article  ADS  Google Scholar 

  56. A.V. Nikitin, O.M. Lyulin, S.N. Mikhailenko, V.I. Perevalov, N.N. Filippov, I.M. Grigoriev, I. Morino, T. Yokota, R. Kumazawa, T. Watanabe, J. Quant. Spectrosc. Radiat. Transf. 111, 2211 (2010)

    Article  ADS  Google Scholar 

  57. P. Werle, R. Mücke, F. Slemr, Appl. Phys. B 57, 131 (1993)

    Article  ADS  Google Scholar 

  58. W. Walcher, M. Elbel, Praktikum der Physik. Mit 88 Versuchen, 14 Tabellen im Text, einem Tabellenanhang und einem ausklappbaren Periodensystem der Elemente (Vieweg + Teubner, Wiesbaden, 2009)

    Google Scholar 

  59. L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.-M. Flaud, R.R. Gamache, J.J. Harrison, J.-M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 130, 4 (2013)

    Article  ADS  Google Scholar 

  60. P. Varanasi, J. Quant. Spectrosc. Radiat. Transf. 11, 1711 (1971)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank the Deutsche Forschungsgemeinschaft for its support through CRC/Transregio 150 “Turbulent, chemically reactive multi-phase flows near walls”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven Wagner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bürkle, S., Walter, N. & Wagner, S. Laser-based measurements of pressure broadening and pressure shift coefficients of combustion-relevant absorption lines in the near-infrared region. Appl. Phys. B 124, 121 (2018). https://doi.org/10.1007/s00340-018-6993-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6993-y

Navigation