Skip to main content
Log in

Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We report the first demonstration of heterodyne phase-sensitive dispersion spectroscopy (HPSDS) for the simultaneous temperature and H2O concentration measurements in combustion environments. Two continuous-wave distributed-feedback quantum cascade lasers (DFB-QCLs) at 5.27 and 10.53 µm were used to exploit the strong H2O transitions (1897.52 and 949.53 cm−1) at high temperatures. The injection current of each QCL was modulated at sub-GHz or GHz to generate the three-tone radiation and the dispersion signal was detected by the radio-frequency down-conversion heterodyning. The peak-to-peak ratio of the two H2O dispersion spectra exhibits a monotonic relationship with temperature over the temperature range of 1000–3000 K, indicating the capability of performing two-line thermometry using laser dispersion spectroscopy. We measured the temperatures of CH4/air flames at different equivalence ratios (Φ = 0.8–1.2), yielding a good agreement with the corresponding thermocouple measurements. In addition, one-dimensional kinetic modeling coupled with a detailed chemical kinetic mechanism (GRI 3.0) was conducted to compare with the measured H2O concentrations using HPSDS. Finally, we demonstrated HPSDS is immune to optical power fluctuations by measuring the dispersion spectra at varied incident laser powers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C.A. Taatjes, N. Hansen, A. McIlroy, J.A. Miller, J.P. Senosiain, S.J. Klippenstein, F. Qi, L. Sheng, Y. Zhang, T.A. Cool, Science 308(5730), 1887–1889 (2005)

    Article  ADS  Google Scholar 

  2. C. Schulz, V. Sick, Prog. Energy Combust. Sci. 31, 75–121 (2005)

    Article  Google Scholar 

  3. R.K. Hanson, D.F. Davidson, Prog. Energy Combust. Sci. 44, 103–114 (2014)

    Article  Google Scholar 

  4. H. Michelsen, C. Schulz, G. Smallwood, S. Will, Prog. Energy Combust. Sci. 51, 2–48 (2015)

    Article  Google Scholar 

  5. W. Cai, C.F. Kaminski, Prog. Energy Combust. Sci. 59, 1–31 (2017)

    Article  Google Scholar 

  6. R.K. Hanson, Proc. Combust. Inst. 33, 1–40 (2011)

    Article  Google Scholar 

  7. R.K. Hanson, R.M. Spearrin, C.S. Goldenstein, Spectroscopy and optical diagnostics for gases (Springer, Switzerland, 2016)

    Book  Google Scholar 

  8. R.K. Hanson, P.A. Kuntz, C.H. Kruger, Appl. Opt. 16, 2045–2048 (1977)

    Article  ADS  Google Scholar 

  9. C.S. Goldenstein, R.M. Spearrin, J.B. Jeffries, R.K. Hanson, Prog. Energy Combust. Sci. 60, 132–176 (2017)

    Article  Google Scholar 

  10. J.S. Toll, Phys. Review 104, 1760 (1956)

    Article  ADS  MathSciNet  Google Scholar 

  11. G. Wysocki, D. Weidmann, Opt. Express 18, 26123–26140 (2010)

    Article  ADS  Google Scholar 

  12. P. Martín-Mateos, P. Acedo, Opt. Express 22, 15143–15153 (2014)

    Article  ADS  Google Scholar 

  13. M. Nikodem, G. Plant, D. Sonnenfroh, G. Wysocki, Appl. Phys. B 119, 3–9 (2015)

    Article  ADS  Google Scholar 

  14. W. Ding, L. Sun, L. Yi, X. Ming, Appl. Opt. 55, 8698–8704 (2016)

    Article  ADS  Google Scholar 

  15. P. Martín-Mateos, J. Hayden, P. Acedo, B. Lendl, Analyt. Chemistry 89, 5916–5922 (2017)

    Article  Google Scholar 

  16. S. Paul, P. Martín-Mateos, N. Heermeier, F. Küppers, P. Acedo, ACS Photonics 4, 2664–2668 (2017)

    Article  Google Scholar 

  17. C.A. Alrahman, A. Khodabakhsh, F.M. Schmidt, Z. Qu, A. Foltynowicz, Opt. Express 22, 13889–13895 (2014)

    Article  ADS  Google Scholar 

  18. P. Martín-Mateos, B. Jerez, P. Acedo, Opt. Express 23, 21149–21158 (2015)

    Article  ADS  Google Scholar 

  19. M. Nikodem, G. Wysocki, Opt. Lett. 38, 3834–3837 (2013)

    Article  ADS  Google Scholar 

  20. L. Ma, Z. Wang, K.-P. Cheong, H. Ning, W. Ren, Accepted for oral presentation in the 37th International Symposium on Combustion, Dublin, Ireland

  21. H. Olesen, G. Jacobsen., IEEE J. Quantum Electron. 18, 2069–2080 (1982)

    Article  ADS  Google Scholar 

  22. A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, Appl. Phys. Lett. 103, 191107 (2013)

    Article  ADS  Google Scholar 

  23. A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, Opt. Express 22, 23439–23455 (2014)

    Article  ADS  Google Scholar 

  24. L. Ma, H. Ning, J. Wu, W. Ren, Combust. Sci. Technol. 190, 392–407 (2018)

    Article  Google Scholar 

  25. L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111, 2139–2150 (2010)

    Article  ADS  Google Scholar 

  26. L.H. Ma, L.Y. Lau, W. Ren, Appl. Phys. B 123, 83 (2017)

    Article  ADS  Google Scholar 

  27. Reaction Design (2013) CHEMKIN-PRO 15131. Reaction design, San Diego, CA

  28. G.P. Smith, D.M. Golden, M. Frenklach, N.W. Moriarty, B. Eiteneer, M. Goldenberg, C.T. Bowman, R.K. Hanson, S. Song, W.C. Gardiner Jr., “GRI-Mech 3.0,” URL: http://www.me.berkeley.edu/gri_mech/. Accessed 1 Feb 2018

  29. S.T. Sanders, J. Wang, J.B. Jeffries, R.K. Hanson, Appl. Opt. 40, 4404–4415 (2001)

    Article  ADS  Google Scholar 

  30. L. Ma, W. Cai, A.W. Caswell, T. Kraetschmer, S.T. Sanders, S. Roy, J.R. Gord, Opt. Express 17, 8602–8613 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (NSFC) (51776179) and Research Grants Council of the Hong Kong Special Administrative Region, China (14234116). The authors gratefully acknowledge the National Supercomputing Center (Shenzhen) for providing CHEMKIN-Pro (15131) software and computational facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ren.

Additional information

This article is part of the topical collection “Mid-infrared and THz Laser Sources and Applications” guest edited by Wei Ren, Paolo De Natale and Gerard Wysocki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Wang, Z., Cheong, KP. et al. Temperature and H2O sensing in laminar premixed flames using mid-infrared heterodyne phase-sensitive dispersion spectroscopy. Appl. Phys. B 124, 117 (2018). https://doi.org/10.1007/s00340-018-6990-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6990-1

Navigation