High-power all-fiber ultra-low noise laser

Abstract

High-power ultra-low noise single-mode single-frequency lasers are in great demand for interferometric metrology. Robust, compact all-fiber lasers represent one of the most promising technologies to replace the current laser sources in use based on injection-locked ring resonators or multi-stage solid-state amplifiers. Here, a linearly polarized high-power ultra-low noise all-fiber laser is demonstrated at a power level of 100 W. Special care has been taken in the study of relative intensity noise (RIN) and its reduction. Using an optimized servo actuator to directly control the driving current of the pump laser diode, we obtain a large feedback bandwidth of up to 1.3 MHz. The RIN reaches − 160 dBc/Hz between 3 and 20 kHz.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/

  2. 2.

    LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 116, 061102 (2016)

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    LIGO Scientific Collaboration and Virgo Collaboration, Phys. Rev. Lett. 119, 141101 (2017)

    ADS  Article  Google Scholar 

  4. 4.

    T.A. Savard, K.M. O’Hara, J.E. Thomas, Phys. Rev. A 56, R1095 (1997)

    ADS  Article  Google Scholar 

  5. 5.

    A. Omran, M. Boll, T.A. Hilker, K. Kleinlein, G. Salomon, I. Bloch, C. Gross, Phys. Rev. Lett. 115, 263001 (2015)

    ADS  Article  Google Scholar 

  6. 6.

    R. Tyumenev, M. Favier, S. Bilicki, E. Bookjans, R. Le Targat, J. Lodewyck, D. Nicolodi, Y. Le Coq, M. Abgrall, J. Guéna, L. De Sarlo, S. Bize, New J. Phys. 18, 113002 (2016)

    ADS  Article  Google Scholar 

  7. 7.

    P. Kwee, C. Bogan, K. Danzmann, M. Frede, H. Kim, P. King, J. Pöld, O. Puncken, R.L. Savage, F. Seifert, P. Wessels, L. Winkelmann, B. Willke, Opt. Express 20, 10617–10634 (2012)

    ADS  Article  Google Scholar 

  8. 8.

    C. Basu, P. Weßels, J. Neumann, D. Kracht, Opt. Lett. 37, 2862–2864 (2012)

    ADS  Article  Google Scholar 

  9. 9.

    K. Takeno, T. Ozeki, S. Moriwaki, N. Mio, Opt. Lett. 30, 2110–2112 (2005)

    ADS  Article  Google Scholar 

  10. 10.

    C.L. Mueller, M.A. Arain, G. Ciani, R.T. DeRosa, A. Effler, D. Feldbaum, V.V. Frolov, P. Fulda, J. Gleason, M. Heintze, K. Kawabe, E.J. King, K. Kokeyama, W.Z. Korth, R.M. Martin, A. Mullavey, J. Peold, V. Quetschke, D.H. Reitze, D.B. Tanner, C. Vorvick, L.F. Williams, G. Mueller, Rev. Sci. Instrum. 87, 014502 (2016)

    ADS  Article  Google Scholar 

  11. 11.

    C. Robin, I. Dajani, B. Pulford, Opt. Lett. 39, 666–669 (2014)

    ADS  Article  Google Scholar 

  12. 12.

    M. Karow, C. Basu, D. Kracht, J. Neumann, P. Wessels, Opt. Express 20, 5319–5324 (2012)

    ADS  Article  Google Scholar 

  13. 13.

    A. Liem, J. Limpert, H. Zellmer, A. Tünnermann, Opt. Lett. 28, 1537–1539 (2003)

    ADS  Article  Google Scholar 

  14. 14.

    L. Zhang, S. Cui, C. Liu, J. Zhou, Y. Feng, Opt. Express 21, 5456–5462 (2013)

    ADS  Article  Google Scholar 

  15. 15.

    T. Theeg, C. Ottenhues, H. Sayinc, J. Neumann, D. Kracht, Opt. Lett. 41, 9–12 (2016)

    ADS  Article  Google Scholar 

  16. 16.

    L. Huang, H. Wu, R. Li, L. Li, P. Ma, X. Wang, J. Leng, P. Zhou, Opt. Lett. 42, 1–4 (2017)

    ADS  Article  Google Scholar 

  17. 17.

    J. Boullet, G. Guiraud, G. Santarelli, C. Vincont, S. Salort, C. Pierre, Multi-100W class, fully integrated, monolithic ytterbium-doped photonic-crystal fiber amplifier module. Proc. SPIE. 9730, 97300Q (2016). https://doi.org/10.1117/12.2209496

    ADS  Article  Google Scholar 

  18. 18.

    http://www.azurlight-systems.com/

  19. 19.

    G. Guiraud, N. Traynor, G. Santarelli, High-power and low-intensity noise laser at 1064 nm. Opt. Lett. 41, 4040–4043 (2016)

    ADS  Article  Google Scholar 

  20. 20.

    H.J. Otto, N. Modsching, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Express 23, 15265–15277 (2015)

    ADS  Article  Google Scholar 

  21. 21.

    B. Ward, Opt. Express 24, 3488–3501 (2016)

    ADS  Article  Google Scholar 

  22. 22.

    Virgo Collaboration, Technical Report VIR-0128A-12 (2012)

  23. 23.

    S. Ricciardi, P. Mosca, L. Maddaloni, M. Santamaria, P. De Rosa, De Natale, Opt. Express 21, 14618–14626 (2013)

    ADS  Article  Google Scholar 

  24. 24.

    M. Tröbs, S. Barke, T. Theeg, D. Kracht, G. Heinzel, K. Danzmann, Opt. Lett. 35, 435–437 (2010)

    ADS  Article  Google Scholar 

  25. 25.

    N. Chiodo, K. Djerroud, O. Acef, A. Clairon, P. Wolf, Appl. Opt. 52, 7342–7351 (2013)

    ADS  Article  Google Scholar 

  26. 26.

    G. Zhao, F. Guiraud, B. Floissat, S. Gouhier, N. Rota-Rodrigo, G. Traynor, Santarelli, Opt. Express 25, 357–366 (2017)

    ADS  Article  Google Scholar 

  27. 27.

    H. Tünnermann, J. Neumann, D. Kracht, P. Weßels, Opt. Express 20, 13539–13550 (2012)

    ADS  Article  Google Scholar 

  28. 28.

    S. Rota-Rodrigo, B. Gouhier, M. Laroche, J. Zhao, B. Canuel, A. Bertoldi, P. Bouyer, N. Traynor, B. Cadier, T. Robin, G. Santarelli, Opt. Lett. 42, 4557–4560 (2017)

    ADS  Article  Google Scholar 

  29. 29.

    B. Willke, K. Danzmann, M. Frede, P. King, D. Kracht, P. Kwee, O. Punken, R. Savage, B. Schulz, F. Seifert, C. Veltkamp, S. Wagner, P. Weßels, L. Winkelmann, Class. Quantum Grav. 25, 114040 (2008)

    ADS  Article  Google Scholar 

  30. 30.

    P. Junker, B. Oppermann, Willke, Opt. Lett. 42, 755–758 (2017)

    ADS  Article  Google Scholar 

  31. 31.

    J. Rollins, D. Ottaway, M. Zucker, R. Weiss, R. Abbott, Opt. Lett. 29, 1876–1878 (2004)

    ADS  Article  Google Scholar 

  32. 32.

    N. Mio, T. Ozeki, K. Machida, S. Moriwaki, Jpn. J. Appl. Phys. 46, 5338–5341 (2007)

    ADS  Article  Google Scholar 

  33. 33.

    R.S. Abbott, P.J. King, Rev. Sci. Instrum. 72, 1346–1349 (2001)

    ADS  Article  Google Scholar 

  34. 34.

    L.Wei, Ph.D. dissertation (2015), https://tel.archives-ouvertes.fr/tel-01284969

  35. 35.

    F. Wei, C.N. Cleva, Man, Opt. Lett. 41, 5817–5820 (2016)

    ADS  Article  Google Scholar 

  36. 36.

    J. Aasi et al., LIGO Collaboration, Class. Quantum Grav. 32, 074001 (2015)

    ADS  Article  Google Scholar 

  37. 37.

    F. Acernese et al., Virgo Collaboration, Class. Quantum Grav. 32, 024001 (2015)

    ADS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported Agence Nationale de la Recherche (ANR) (ANR14 LAB05 0002 01) and Conseil Régional d’Aquitaine (2014-IR60309-00003281); the author J. Zhao acknowledges Post-doctoral scholarship Grant from La Fondation Franco-Chinoise pour la Science et ses Applications (FFCSA); European Gravitational Observatory (EGO). We thank Dr. Benoit Gouhier and Dr. Sergio Rota-Rodrigo for their comments on the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giorgio Santarelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Guiraud, G., Pierre, C. et al. High-power all-fiber ultra-low noise laser. Appl. Phys. B 124, 114 (2018). https://doi.org/10.1007/s00340-018-6989-7

Download citation