Skip to main content
Log in

Linear build-up of Fano resonance spectral profiles

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The build-up dynamics of a continuous spectrum under the action of a weak laser field on a Fano resonance with the use of the pulses with the Lorentz spectrum and ultrashort pulses in the wavelet form is investigated. A dispersion-time excitation dependence of the Fano resonances in a He atom, in an InP impurity semiconductor, in longitudinal optical LO-phonons of a shallow donor exciton in pure ZnO crystals, and in metamaterials are calculated. The numerical simulation of the dynamics has shown time-dependent formation of a Fano spectral profile in the systems of different physical natures under the action of ultrashort pulses with attosecond and femtosecond durations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V.S. Letokhov, V.P. Chebotayev, Ultrahigh-Resolution Nonlinear Laser Spectroscopy (Nauka, Mascow, 1990), p. 512

    Google Scholar 

  2. S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, Oxford, 1995), p. 543

    Google Scholar 

  3. L. Allen, J.H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975)

    Google Scholar 

  4. V.M. Akulin, N.V. Karlov, Intense Resonant Interactions in Quantum Electronics. M. Nauka (1987), p. 312

  5. V. Astapenko, Interaction of ultrashort electromagnetic pulses with matter. (Springer, New York, 2013), p. 94

    Book  Google Scholar 

  6. M.G. Arustamyan, V.A. Astapenko, Phase control of two-level system excitation by short laser pulses. Laser Phys. 18, 768 (2008)

    Article  ADS  Google Scholar 

  7. V.A. Astapenko, M.S. Romadanovskii, Excitation of two-level system by chirped laser pulse. Laser Phys. 19, 969 (2009)

    Article  ADS  Google Scholar 

  8. U. Fano, Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 13, 1866 (1961)

    Article  ADS  MATH  Google Scholar 

  9. V.S. Lisitsa, S.I. Yakovlenko, Resonance of discrete states against the background of a continuous spectrum. Sov. Phys. JETP 39, 975–980 (1974)

    ADS  Google Scholar 

  10. H. Feshbach, Unified theory of nuclear reactions. Ann. Phys. 5, 357–390 (1958)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. V.M. Agranovich, M.D. Galanin, Electron-Excitation Energy Transfer in Condensed Media (Nauka, Moscow, 1978), p. 384

    Google Scholar 

  12. C. Chin, R. Grimm, P. Julienne, E. Tiesinga, Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010)

    Article  ADS  Google Scholar 

  13. A.E. Miroshnichenko, Fano resonances in nanoscale structures. Rev. Mod. Phys. 82, 2257–2298 (2010)

    Article  ADS  Google Scholar 

  14. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Rev. Lett. 91(4), 127401 (2003)

    Article  ADS  Google Scholar 

  15. J. Förstner, C. Weber, J. Danckwerts, A. Knorr, Phonon-assisted damping of Rabi oscillations in semiconductor quantum dots. Phys. Stat. Sol. 238, 419–422 (20.03)

  16. O. Verzelen, R. Ferreira, G. Bastard, Excitonic polarons insemiconductor quantum dots. Phys. Rev. Lett. 88(4), 146803 (2002)

    Article  ADS  Google Scholar 

  17. S.J. Xu, Resonant coupling of bound excitons with LO phonons in ZnO: excitonic polaron states and Fano resonance. J. Chem. Phys. 123(5), 221105 (2005)

    Article  ADS  Google Scholar 

  18. M.L. Kerfoot, A.O. Govorov, C. Czarncki, D. Lu, Y.N. Gad, A.S. Bracker, D. Gammon, M. Scheiber, Optophotonics with coupled quantum dots. Nature Commun. 5(6), 3299 (2014)

    Article  ADS  Google Scholar 

  19. R. Hetz, I. Mukhametzhanov, O. Stier, A. Madhukar, D. Bimberg, Enhanced polar ecxiton-LO-phonon interaction in quantum dots. Phys. Rev. Lett. 83(4), 4654 (1999)

    Article  ADS  Google Scholar 

  20. M.-T. Cheng, Y.-Y. Song, Fano resonance analysis in a pair of semiconductor quantum dots coupling to a metal nanowire. Opt. Lett. 37, 978–980 (2012)

    Article  ADS  Google Scholar 

  21. R.A. Shoh, N.F. Scherer, M. Pelton, S.K. Gray, Ultrafast reversal of Fano resonance in plasmon-exciton system. Phys. Rev. B 88, 075411 (2013)

    Article  ADS  Google Scholar 

  22. D.C. Marinica, H. Lourenço-Martins, J. Aizpurua, A.G. Borisov, Plexciton quenching by resonant electron transfer from quantum emitter to metallic nanoantenna. Nano Lett. 13, 5972–5978 (2013)

    Article  ADS  Google Scholar 

  23. W. Zhang, A.O. Govorov, G.W. Bryant, Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear effect. Phys. Rev. Lett. 97(4), 146804 (2006)

    Article  ADS  Google Scholar 

  24. A. Manjavacas, F.J. Garcíde, P. Abajo, Nordlander, Quantum plexcitons: Strongly interacting plasmons and exitons. Nano Lett. 11, 2118–2323 (2011)

    Article  Google Scholar 

  25. R.D. Artuso, G.W. Bryant, Hybrid quantum dot-metal nanoparticle systems: connecting the dots. Acta Phys. Pol. A 122, 289–293 (2012)

    Article  Google Scholar 

  26. E.S. Andrianov, A.A. Pukhov, A.P. Vinogradov, A.V. Dorofeenko, A.A. Lisyansky, The change in the resonance fluorescence spectrum of a two-level atom in the near field of a plasmon nanoparticle. JETP 97, 522–528 (2013)

    Google Scholar 

  27. J. Yang, M. Perrin, P. Lalanne, Analytical Formalism for the interaction of two-level quantum systems with metal nanoresonators. Phys. Rev. X 5(9), 021008 (2015)

    Google Scholar 

  28. T. Hartsfield, W.-S. Chang, S. C. Yang, T. Ma, J. Shi, L. Sun, G. Shvets, S. Link, X. Li, Single quantum dot controls a plasmonic cavity’s scattering and anisotropy. PNAS 112, 12288–12292 (2015)

    Article  ADS  Google Scholar 

  29. F.B. Rosmej, V.A. Astapenko, V.S. Lisitsa, Effect of ultrashort laser-pulse duration on Fano resonances in atomic spectra. Phys. Rev. A 90(4), 043421 (2014)

    Article  ADS  Google Scholar 

  30. C. Ott, A. Kaldun, P. Raith, K. Meyer, M. Laux, J. Evers, C.H. Keitel, C.H. Green, T. Pfeifer, Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013)

    Article  ADS  Google Scholar 

  31. M. Wickenhauser, J. Burgdörfer, F. Krausz, M. Drescher, Time resolved Fano resonances. Phys. Rev. Lett. 94, 023002 (2005)

    Article  ADS  MATH  Google Scholar 

  32. T. Mercouris, Y. Komninos, C.A. Nicolaides, Time-dependent formation of the profile of the He 2s2p1Po state excited by a short laser pulse. Phys. Rev. A 75, 013407 (2007) (Erratum Phys. Rev. A 87, 069905 (2013))

    Article  ADS  Google Scholar 

  33. C.A. Nicolaides, T. Mercouris, Y. Komninos, Time-dependent formation of the profile of resonance atomic states and its dependence on the duration of ultrashort pulses from free-electron lasers. Phys. Rev. A 80, 055402 (2009)

    Article  ADS  Google Scholar 

  34. W.-C. Chu, C.D. Lin, Theory of ultrafast autoionization dynamics of Fano resonances. Phys. Rev. A 82, 053415 (2010)

    Article  ADS  Google Scholar 

  35. L. Argenti, E. Lindroth, Ionization branching ratio control with a resonance attosecond clock. Phys. Rev. Lett. 105, 053002 (2010)

    Article  ADS  Google Scholar 

  36. L. Argenti, R. Pazourek, J. Feist, S. Nagele, M. Liertzer, E. Persson, J. Burgdörfer, E. Lindroth, Photoionization of helium by attosecond pulses: extraction of spectra from correlated wave functions. Phys. Rev. A 87, 053405 (2013)

    Article  ADS  Google Scholar 

  37. H. Wang, M. Chini, S. Chen, S. Zhang, C.H. He, F. Cheng, Y. Wu, U. Thumm, Z. Chang, Attosecond time-resolved autoionization of argon. Phys. Rev. Lett. 105, 143002 (2010)

    Article  ADS  Google Scholar 

  38. A. Kaldun, A. Blättermann, V. Stooß, S. Donsa, H. Wei, R. Pazourek, S. Nagele, C. Ott, C.D. Lin, J. Burgdörfer, T. Pfeifer, Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016)

    Article  ADS  Google Scholar 

  39. V. Gruson, L. Barreau, Б Jiménez-Galan, F. Risoud, J. Caillat, A. Maquet, B. Carré, F. Lepetit, J.-F. Hergott, T. Ruchon, L. Argenti, R. Taïeb, F. Martín, P. Salières, Attosecond dynamics through a Fano resonance: monitoring the birth of a photoelectron. Science 354, 734–738 (2016)

    Article  ADS  Google Scholar 

  40. J.-P. Connerade, A.M. Lane, Interacting resonances in atomic spectroscopy. Rep. Prog. Phys. 51, 1439–1478 (1988)

    Article  ADS  Google Scholar 

  41. R. Jin, X.-Y. Han, X. Gao, J.-M. Li, Analytical property of scattering matrix: spectroscopy phenomena and sharp overlapping autoionization resonances. Sci. Rep. 7, 11589 (2017)

    Article  ADS  Google Scholar 

  42. M. Wickenhauser, J. Burgdцrfer, F. Krausz, M. Drescher, Attosecond streaking of overlapping Fano resonances. J. Mod. Opt. 53, 247–257 (2006)

    Article  ADS  MATH  Google Scholar 

  43. A. Wirth, M.Th.. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T.T. Luu, S. Pabst, R. Santra, Z.A. Alahmed, A.M. Azzeer, V.S. Yakovlev, V. Pervak, F. Krausz, E. Goulielmakis, Synthesized light transients. Science 334, 195–200 (2011)

    Article  ADS  Google Scholar 

  44. M.T. Hassan, A. Wirth, I. Grguraš, A. Moulet, T.T. Luu, J. Gagnon, V. Pervak, E. Goulielmakis, Invited article: attosecond photonics: synthesis and control of light transients. Rev. Sc. Instr. 83, 111301 (2012)

    Article  ADS  Google Scholar 

  45. N.M. Astaf’eva, Wavelet analysis: fundamentals of theory and examples of application. UFN 166, 1145–1170 (1996)

    Article  Google Scholar 

  46. G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical methods for physicists (Elsevier, Oxford, 2013)

    MATH  Google Scholar 

  47. K. Schulz, G. Kaindl, M. Domke, J.D. Bozek, P.A. Heimann, A.S. Schlachter, J.M. Rost, Observation of New Rydberg series and resonances in doubly excited helium at ultrahigh resolution. Phys. Rev. Lett. 77(4), 3086 (1996)

    Article  ADS  Google Scholar 

  48. V.Ya.. Aleshkin, D.I. Burdeiny, L.V. Gavrilenko, Calculation of the parameters for the Fano resonance in the impurity photocurrent spectrum of semiconductors doped with hydrogen-like donors. Semicond. Sci. Technol. 25, 085005 (2010) (7 pp)

    Article  ADS  Google Scholar 

  49. K. Jin, S.J. Xu, Fano resonance in the luminescence spectra of donor bound excitons in polar semiconductors. Appl. Phys. Lett. 90(3), 032107 (2007)

    Article  ADS  Google Scholar 

  50. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 9, 707–715 (2010)

    Article  ADS  Google Scholar 

  51. T. Gregory, P. Forcherio, M. Blake, D. Seeram, D. De Jarnette, K. Roper, Coupled dipole plasmonics of nanoantennas in discontinuous, complex dielectric environments. J. Quan. Spectrosc. Rad. Transf. 166, 93–101 (2015)

    Article  ADS  Google Scholar 

  52. Z. Jia, Y. Shuai, J. Zhang, H. Tan, Asymmetric radiation transfer based on linear light-matter interaction. J. Quant. Spectrosc. Radiat. Transfer 202, 21–30 (2017)

    Article  ADS  Google Scholar 

  53. M.F. Limonov, M.V. Rybin, A.N. Poddubny, Y.S. Kivshar, Fano resonances in photonics. Nature Phonon. 11, 543–554 (2017)

    Google Scholar 

Download references

Acknowledgements

The work was executed within the framework of the State Assignment of the RF Ministry of Education and Science (assignment No. 3.9890.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yakovets.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovinski, P.A., Yakovets, A.V. & Astapenko, V.A. Linear build-up of Fano resonance spectral profiles. Appl. Phys. B 124, 111 (2018). https://doi.org/10.1007/s00340-018-6983-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6983-0

Navigation