Applied Physics B

, 124:122 | Cite as

Mid-infrared supercontinuum generation in fluoride fiber amplifiers: current status and future perspectives

  • Jean-Christophe GauthierEmail author
  • Louis-Rafaël Robichaud
  • Vincent Fortin
  • Réal Vallée
  • Martin Bernier
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications


The quest for a compact and efficient broadband laser source able to probe the numerous fundamental molecular absorption lines in the mid-infrared (3–8 µm) for various applications has been going on for more than a decade. While robust commercial fiber-based supercontinuum (SC) systems have started to appear on the market, they still exhibit poor energy conversion into the mid-infrared (typically under 30%) and are generally not producing wavelengths exceeding 4.7 µm. Here, we present an overview of the results obtained from a novel approach to SC generation based on spectral broadening inside of an erbium-doped fluoride fiber amplifier seeded directly at 2.8 µm, allowing mid-infrared conversion efficiencies reaching up to 95% and spectral coverage approaching the transparency limit of ZrF4 (4.2 µm) and InF3 (5.5 µm) fibers. The general concept of the approach and the physical mechanisms involved are presented alongside the various configurations of the system to adjust the output characteristics in terms of spectral coverage and output power for different applications.



The authors thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation (CFI) (Grant no. 5180), and the Fonds de Recherche du Québec—Nature et Technologies (FRQNT) (Grant no. 144616). We also thank Darren Kraemer from Light Matter Interaction inc. for helpful discussions and Le Verre Fluoré for providing the InF3 fibers. Funding was provided by Canadian Network for Research and Innovation in Machining Technology, Natural Sciences and Engineering Research Council of Canada (Grant no. IRCPJ469414-13).


  1. 1.
    I.E. Gordon, L.S. Rothman, Y. Babikov, A. Barbe, D. Chris Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Müller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, J. Quant. Spectrosc. Radiat. Transf. 203, 3 (2017)ADSCrossRefGoogle Scholar
  2. 2.
    T. Steinle, A. Steinmann, R. Hegenbarth, H. Giessen, Opt. Express 22, 9567 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    I. Vurgaftman, R. Weih, M. Kamp, J.R. Meyer, C.L. Canedy, C.S. Kim, M. Kim, W.W. Bewley, C.D. Merritt, J. Abell, S. Höfling, J. Phys. D Appl. Phys. 48, 123001 (2015)ADSCrossRefGoogle Scholar
  4. 4.
    Z. Wang, C. Li, M. Zhou, H. Zhang, W. He, W. Li, Y. Qiu, Proc. SPIE Int. Soc. Opt. Eng. 10156, 101560I (2016). Google Scholar
  5. 5.
    N. Cezard, A. Dobroc, G. Canat, M. Duhant, W. Renard, C. Alhenc-Gelas, S. Lefebvre, J. Fade, Proc. SPIE Int. Soc. Opt. Eng. 8182, 81820V, (2011)ADSGoogle Scholar
  6. 6.
    M. Kumar, M.N. Islam, F.L. Terry, M.J. Freeman, A. Chan, M. Neelakandan, T. Manzur, Appl. Opt. 51, 2794 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    A.B. Seddon, Phys. Status Solidi Basic Res. 250, 1020 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    M. Michalska, J. Mikolajczyk, J. Wojtas, J. Swiderski, Sci. Rep. 6, 1 (2016)CrossRefGoogle Scholar
  9. 9.
    G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi, Appl. Phys. Lett. 95, 1 (2009)Google Scholar
  10. 10.
    C.R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, O. Bang, Nat. Photonics 8, 830 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    J.M. Dudley, G. Genty, S. Coen, Rev. Mod. Phys. 78, 1135 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    J.J. Pigeon, S.Y. Tochitsky, C. Gong, C. Joshi, Opt. Lett. 39, 3246 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    T. Cheng, K. Nagasaka, T.H. Tuan, X. Xue, M. Matsumoto, H. Tezuka, T. Suzuki, Y. Ohishi, Opt. Lett. 41, 2117 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    C. Xia, M. Kumar, M.Y. Cheng, O.P. Kulkarni, M.N. Islam, A. Galvanauskas, F.L. Terry, M.J. Freeman, D.A. Nolan, W.A. Wood, IEEE J. Sel. Top. Quantum Electron. 13, 789 (2007)CrossRefGoogle Scholar
  15. 15.
    M. Tao, T. Yu, Z. Wang, H. Chen, Y. Shen, G. Feng, X. Ye, Sci. Rep. 6, 2 (2016)CrossRefGoogle Scholar
  16. 16.
    V.V. Alexander, O.P. Kulkarni, M. Kumar, C. Xia, M.N. Islam, F.L. Terry, M.J. Welsh, K. Ke, M.J. Freeman, M. Neelakandan, A. Chan, Opt. Fiber Technol. 18, 349 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    K. Yin, B. Zhang, L. Yang, J. Hou, Opt. Lett. 42, 2334–2337 (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A.M. Heidt, J.H.V. Price, C. Baskiotis, J.S. Feehan, Z. Li, S.U. Alam, D.J. Richardson, Opt. Express 21, 24281 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    P. Moselund, C. Petersen, L. Leick, J. Seidelin Dam, P. Tidemand-Lichtenberg, C. Pedersen, Adv. Solid-State Lasers Congr. (2013). JTh5A.9Google Scholar
  20. 20.
    K. Liu, J. Liu, H. Shi, F. Tan, P. Wang, Opt. Express 22, 24384 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    W.-Q. Yang, B. Zhang, J. Hou, K. Yin, Z.-J. Liu, Chin. Phys. B 23, 054208 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    J. Swiderski, Prog. Quantum Electron. 38, 189 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    J.-C. Gauthier, V. Fortin, S. Duval, R. Vallée, M. Bernier, Opt. Lett. 40, 5247 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J. Geng, Q. Wang, S. Jiang, Appl. Opt. 51, 834 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    M. Pollnau, S.D. Jackson, IEEE J. Sel. Top. Quantum Electron. 7, 30 (2001)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, F. Gan, P. Wang, Appl. Opt. 33, 50 (1994)ADSCrossRefGoogle Scholar
  27. 27.
    N. Caron, M. Bernier, D. Faucher, R. Vallée, Opt. Express 20, 22188 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Guan, J.W. Haus, P. Powers, J. Opt. Soc. Am. B 21, 1225 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    L. Yang, B. Zhang, K. Yin, T. Wu, Y. Zhao, J. Hou, Photon. Res. 6, 417–421 (2018)CrossRefGoogle Scholar
  30. 30.
    D. Faucher, M. Bernier, G. Androz, N. Caron, R. Vallée, Opt. Lett. 36, 1104 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J.-C. Gauthier, V. Fortin, J.-Y. Carrée, S. Poulain, M. Poulain, R. Vallée, M. Bernier, Opt. Lett. 41, 1756 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    I. Kubat, O. Bang, Opt. Express 24, 2513 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    C.R. Petersen, P.M. Moselund, C. Petersen, U. Møller, O. Bang, Opt. Express 24, 749 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    P. Falk, M.H. Frosz, O. Bang, L. Thrane, P.E. Andersen, A.O. Bjarklev, K.P. Hansen, J. Broeng, Opt. Lett. 33, 621 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    J. Swiderski, M. Michalska, Opt. Lett. 39, 910–913 (2014)ADSCrossRefGoogle Scholar
  36. 36.
    S. Liang, L. Xu, Q. Fu, Y. Jung, D.P. Shepherd, D.J. Richardson, S.-U. Alam, Opt. Express 26, 6490 (2018)ADSCrossRefGoogle Scholar
  37. 37.
    M. Michalska, P. Grzes, P. Hlubina, J. Swiderski, Laser Phys. Lett. 15, 045101 (2018)ADSCrossRefGoogle Scholar
  38. 38.
    J. Swiderski, F. Theberge, M. Michalska, P. Mathieu, D. Vincent, Laser Phys. Lett. 11, 15106 (2014)ADSCrossRefGoogle Scholar
  39. 39.
    M. Michalska, J. Mikolajczyk, J. Wojtas, J. Swiderski, Sci. Rep. 6, 39138 (2016)ADSCrossRefGoogle Scholar
  40. 40.
    L.-R. Robichaud, V. Fortin, J.-C. Gauthier, S. Châtigny, J.-F. Couillard, J.-L. Delarosbil, R. Vallée, M. Bernier, Opt. Lett. 41, 4605 (2016)ADSCrossRefGoogle Scholar
  41. 41.
    S. Duval, J. Gauthier, L.-R. Robichaud, P. Paradis, M. Olivier, V. Fortin, M. Bernier, M. Piché, R. Vallée, Opt. Lett. 41, 5294 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre d’optique, photonique et laser (COPL)Université LavalQuebecCanada

Personalised recommendations