Applied Physics B

, 124:108 | Cite as

Multi-species trace gas sensing with dual-wavelength QCLs

  • P. Morten Hundt
  • Béla Tuzson
  • Oleg Aseev
  • Chang Liu
  • Philipp Scheidegger
  • Herbert Looser
  • Filippos Kapsalidis
  • Mehran Shahmohammadi
  • Jérôme Faist
  • Lukas Emmenegger
Article
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

Instrumentation for environmental monitoring of gaseous pollutants and greenhouse gases tends to be complex, expensive, and energy demanding, because every compound measured relies on a specific analytical technique. This work demonstrates an alternative approach based on mid-infrared laser absorption spectroscopy with dual-wavelength quantum cascade lasers (QCLs). The combination of two dual- and one single-DFB QCL yields high-precision measurements of CO (0.08 ppb), CO2 (100 ppb), NH3 (0.02 ppb), NO (0.4 ppb), NO2 (0.1 ppb), N2O (0.045 ppb), and O3 (0.11 ppb) simultaneously in a compact setup (45 × 45 cm2). The lasers are driven time-multiplexed in intermittent continuous wave mode with a repetition rate of 1 kHz. The individual spectra are real-time averaged (1 s) by an FPGA-based data acquisition system. The instrument was assessed for environmental monitoring and benchmarked with reference instrumentation to demonstrate its potential for compact multi-species trace gas sensing.

Notes

Acknowledgements

This work was financially supported by nano-tera.ch/IrSens II and the Swiss Federal Office for the Environment (FOEN) through “Umwelttechnologieförderung”. We thank the NABEL team for providing the data from the monitoring station in Dübendorf and for supplying the reference gases. The continuous support of Beat Schwarzenbach (Empa) with O3 calibrations and NO x measurements was indispensable for this work. Christoph Zellweger (Empa) is acknowledged for providing the calibrated reference gas cylinder.

References

  1. 1.
    EU, in Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on ambient air quality and cleaner air for Europe (Official Journal of the European Union, 2008). http://data.europa.eu/eli/dir/2008/50/oj
  2. 2.
    WMO/GAW WMO Global Atmosphere Watch (GAW), Implementation plan: 2016–2023, WMO (2016), http://www.wmo.int/pages/prog/arep/gaw/gaw-reports.html. Accessed 16 May 2018
  3. 3.
    M. Steinbacher, C. Zellweger, B. Schwarzenbach, S. Bugmann, B. Buchmann, C. Ordóñez, A.S.H. Prevot, C. Hueglin, Nitrogen oxide measurements at rural sites in Switzerland: bias of conventional measurement techniques. J. Geophys. Res. Atmos. 112, D11307 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    E.J. Dunlea, S.C. Herndon, D.D. Nelson, R.M. Volkamer, F. San Martini, P.M. Sheehy, M.S. Zahniser, J.H. Shorter, J.C. Wormhoudt, B.K. Lamb, E.J. Allwine, J.S. Gaffney, N.A. Marley, M. Grutter, C. Marquez, S. Blanco, B. Cardenas, A. Retama, C.R. Ramos Villegas, C.E. Kolb, L.T. Molina, M.J. Molina, Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment. Atmos. Chem. Phys. 7, 2691–2704 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    J.B. McManus, M.S. Zahniser, D.D. Nelson, J.H. Shorter, S.C. Herndon, D. Jervis, M. Agnese, R. McGovern, T.I. Yacovitch, J.R. Roscioli, Recent progress in laser-based trace gas instruments: performance and noise analysis. Appl. Phys. B Lasers Opt. 119, 203–218 (2015)ADSCrossRefGoogle Scholar
  6. 6.
    J.B. McManus, M.S. Zahniser, D.D. Nelson Jr., J.H. Shorter, S. Herndon, E. Wood, R. Wehr, Application of quantum cascade lasers to high-precision atmospheric trace gas measurements. Opt. Eng. 49, 111124 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    B. Tuzson, K. Zeyer, M. Steinbacher, J.B. McManus, D.D. Nelson, M.S. Zahniser, L. Emmenegger, Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy. Atmos. Meas. Tech. 6, 927–936 (2013)CrossRefGoogle Scholar
  8. 8.
    R.E. Baren, M.E. Parrish, K.H. Shafer, C.N. Harward, S. Quan, D.D. Nelson, J.B. McManus, M.S. Zahniser, Quad quantum cascade laser spectrometer with dual gas cells for the simultaneous analysis of mainstream and sidestream cigarette smoke. Spectrochim Acta Part A Mol Biomol. Spectrosc. 60, 3437–3447 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Huebner, S. Welzel, D. Marinov, O. Guaitella, S. Glitsch, A. Rousseau, J. Roepcke, TRIPLE Q: A three channel quantum cascade laser absorption spectrometer for fast multiple species concentration measurements. Rev. Sci. Instrum. 82, 092102 (2011)Google Scholar
  10. 10.
    C.L. Schiller, H. Bozem, C. Gurk, U. Parchatka, R. Königstedt, G.W. Harris, J. Lelieveld, H. Fischer, Applications of quantum cascade lasers for sensitive trace gas measurements of CO, CH4, N2O and HCHO. Appl. Phys. B 92, 419–430 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    V. Catoire, C. Robert, M. Chartier, P. Jacquet, C. Guimbaud, G. Krysztofiak, The SPIRIT airborne instrument: a three-channel infrared absorption spectrometer with quantum cascade lasers for in situ atmospheric trace-gas measurements. Appl. Phys. B 123, 244 (2017)ADSCrossRefGoogle Scholar
  12. 12.
    M. Razeghi, W.J. Zhou, S. Slivken, Q.Y. Lu, D.H. Wu, R. McClintock, Recent progress of quantum cascade laser research from 3 to 12 mum at the Center for Quantum Devices Invited. Appl. Opt. 56, H30-H44 (2017)CrossRefGoogle Scholar
  13. 13.
    P. Rauter, F. Capasso, Multi-wavelength quantum cascade laser arrays. Laser Photonics Rev. 9, 452–477 (2015)CrossRefGoogle Scholar
  14. 14.
    M. Süess, R. Peretti, Y. Liang, J. Wolf, C. Bonzon, B. Hinkov, S. Nida, P. Jouy, W. Metaferia, S. Lourdudoss, M. Beck, J. Faist, Advanced fabrication of single-mode and multi-wavelength MIR-QCLs. Photonics 3, 26 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Straub, C. Gmachl, D.L. Sivco, A.M. Sergent, F. Capasso, A.Y. Cho, Simultaneously at two wavelengths (5.0 and 7.5 mum) singlemode and tunable quantum cascade distributed feedback lasers. Electron. Lett. 38, 565–567 (2002)CrossRefGoogle Scholar
  16. 16.
    J. Jagerska, P. Jouy, A. Hugi, B. Tuzson, H. Looser, M. Mangold, M. Beck, L. Emmenegger, J. Faist, Dual-wavelength quantum cascade laser for trace gas spectroscopy. Appl. Phys. Lett. 105, 161109 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Jagerska, P. Jouy, B. Tuzson, H. Looser, M. Mangold, P. Soltic, A. Hugi, R. Broennimann, J. Faist, L. Emmenegger, Simultaneous measurement of NO and NO2 by dual-wavelength quantum cascade laser spectroscopy. Opt. Express 23, 1512–1522 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    M. Süess, P.M. Hundt, B. Tuzson, S. Riedi, J. Wolf, R. Peretti, M. Beck, H. Looser, L. Emmenegger, J. Faist, Dual-section DFB-QCLs for multi-species trace gas analysis, Photonics 3, 24 (2016)CrossRefGoogle Scholar
  19. 19.
    F. Kapsalidis, M. Shahmohammadi, M. Süess, J.M. Wolf, E. Gini, M. Beck, M. Hundt, B. Tuzson, L. Emmenegger, J. Faist, Dual-wavelength DFB quantum cascade lasers: sources for multi-species trace gas spectroscopy. Appl. Phys. B Lasers Opt. (2018).  https://doi.org/10.1007/s00340-018-6973-2 (this issue)Google Scholar
  20. 20.
    L.S. Rothman, I.E. Gordon, Y. Babikov, A. Barbe, D.C. Benner, P.F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L.R. Brown, A. Campargue, K. Chance, E.A. Cohen, L.H. Coudert, V.M. Devi, B.J. Drouin, A. Fayt, J.M. Flaud, R.R. Gamache, J.J. Harrison, J.M. Hartmann, C. Hill, J.T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R.J. Le Roy, G. Li, D.A. Long, O.M. Lyulin, C.J. Mackie, S.T. Massie, S. Mikhailenko, H.S.P. Mueller, O.V. Naumenko, A.V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E.R. Polovtseva, C. Richard, M.A.H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G.C. Toon, V.G. Tyuterev, G. Wagner, The HITRAN2012 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 130, 4–50 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    J.B. McManus, D.D. Nelson, S.C. Herndon, J.H. Shorter, M.S. Zahniser, S. Blaser, L. Hvozdara, A. Muller, M. Giovannini, J. Faist, Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm−1. Appl. Phys. B 85, 235–241 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    C. Liu, B. Tuzson, P. Scheidegger, H. Looser, B. Bereiter, M. Graf, M. Hundt, O. Aseev, D. Maas, L. Emmenegger, Laser driving and data processing concept for mobile trace gas sensing: design and implementation. Rev. Sci. Instrum. (2018, to appear)Google Scholar
  23. 23.
    L. Tombez, J. Di Francesco, S. Schilt, G. Di Domenico, J. Faist, P. Thomann, D. Hofstetter, Frequency noise of free-running 4.6 um distributed feedback quantum cascade lasers near room temperature. Opt. Lett. 36, 3109–3111 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    M. Fischer, B. Tuzson, A. Hugi, R. Broennimann, A. Kunz, S. Blaser, M. Rochat, O. Landry, A. Mueller, L. Emmenegger, Intermittent operation of QC-lasers for mid-IR spectroscopy with low heat dissipation: tuning characteristics and driving electronics. Opt. Express 22, 7014–7027 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    NABEL, Technischer Bericht zum Nationalen Beobachtungsnetz für Luftfremdstoffe (NABEL), (2017). https://www.bafu.admin.ch/bafu/de/home/themen/luft/zustand/daten/nationales-beobachtungsnetz-fuer-luftfremdstoffe--nabel-.html. Accessed 16 May 2018
  26. 26.
    P. Werle, R. Mucke, F. Slemr, The limits of signal averaging in atmospheric trace-gas monitoring by tuneable diode-laser absorption-spectroscopy (TDLAS). Appl. Phys. B Photophys. Laser Chem. 57, 131–139 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    WMO/GAW, 18th WMO/IAEA Meeting on Carbon Dioxide, Other greenhouse gases and related tracers measurement techniques (GGMT-2015), WMO (2015), https://library.wmo.int/opac/doc_num.php?explnum_id=3074. Accessed 16 May 2018

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • P. Morten Hundt
    • 1
    • 4
  • Béla Tuzson
    • 1
  • Oleg Aseev
    • 1
  • Chang Liu
    • 1
  • Philipp Scheidegger
    • 1
  • Herbert Looser
    • 1
    • 3
  • Filippos Kapsalidis
    • 2
  • Mehran Shahmohammadi
    • 2
  • Jérôme Faist
    • 2
  • Lukas Emmenegger
    • 1
  1. 1.Empa-Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Air Pollution and Environmental TechnologyDübendorfSwitzerland
  2. 2.ETH Zurich, Quantum Optoelectronics GroupZurichSwitzerland
  3. 3.FHNW, Institute for Aerosol and Sensor TechnologyWindischSwitzerland
  4. 4.MIRO Analytical Technologies GmbHDübendorfSwitzerland

Personalised recommendations