Skip to main content
Log in

Ultrafast responses of two V-shaped compounds with a reverse conjugated structural configuration: an investigation of the reason for the enhanced two-photon absorption cross-section

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

To study the effect of the conjugated structural configuration on the two-photon absorption (TPA) properties of V-shaped compounds, two 1,3,5-triazine-based compounds with the same electron donor (D) and acceptor (A) connected in a reverse-conjugated structural configuration (T02: D-\(\pi\)-A-\(\pi\)-D; R02: A-\(\pi\)-D-\(\pi\)-A) were systematically investigated using steady-state and transient absorption spectroscopy, open-aperture Z-scan measurements, and two-photon fluorescence measurements. The TPA cross-section of compound R02 connected in a A-\(\pi\)-D-\(\pi\)-A-conjugated structural configuration with triphenylamine as the central core was 203 GM, which showed a 2.3-fold enhancement compared with compound T02 connected in a reverse D-\(\pi\)-A-\(\pi\)-D-conjugated structural configuration (90 GM, with 1,3,5-triazine as the central core). This result indicates that the conjugated structural configuration plays an important role in the TPA properties. A two-color pump–probe experiment was used to investigate the effect of the conjugated structural configuration on the excited state and intra-molecular charge transfer (ICT) properties of these V-shaped compounds. The formation and relaxation lifetimes of the ICT state were determined. The results indicate that the electron-donating/accepting strength of the central group, which serves as a communal group for two D-\(\pi\)-A subunits, was confirmed to be a key role to the overall effect of the ICT for V-shaped compounds. These ultrafast dynamic results are in agreement with the TPA properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. G.S. He, G.C. Xu, P.N. Prasad, B.A. Reinhardt, J.C. Bhatt, A.G. Dillard, 2-photon absorption and optical-limiting properties of novel organic-compounds. Opt. Lett. 20, 435–437 (1995)

    Article  ADS  Google Scholar 

  2. S. Kawata, H.B. Sun, T. Tanaka, K. Takada, Finer features for functional microdevices—micromachines can be created with higher resolution using two-photon absorption. Nature 412, 697–698 (2001)

    Article  ADS  Google Scholar 

  3. S. Shukla, E.P. Furlani, X. Vidal, M.T. Swihart, P.N. Prasad, Two-photon lithography of sub-wavelength metallic structures in a polymer matrix. Adv. Mater. 22, 3695–3699 (2010)

    Article  Google Scholar 

  4. J. Fischer, M. Wegener, Three-dimensional optical laser lithography beyond the diffraction limit. Laser Photonics Rev. 7, 22–44 (2013)

    Article  Google Scholar 

  5. R.P. Chaudhary, A. Jaiswal, G. Ummethala, S.R. Hawal, S. Saxena, S. Shukla, Sub-wavelength lithography of complex 2D and 3D nanostructures without two-photon dyes. Addit. Manuf. 16, 30–34 (2017)

    Article  Google Scholar 

  6. B.H. Cumpston, S.P. Ananthavel, S. Barlow, D.L. Dyer, J.E. Ehrlich, L.L. Erskine, A.A. Heikal, S.M. Kuebler, I.-Y.S. Lee, D. McCord-Maughon, J.G. Qin, H. Röckel, M. Rumi, X.-L. Wu, S.R. Marder, J.W. Perry, Two-photon polymerization initiators for three dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999)

    Article  ADS  Google Scholar 

  7. J.D. Bhawalkar, N.D. Kumar, C.F. Zhao, P.N. Prasad, Two-photon photodynamic therapy. J. Clin. Laser Med. Surg. 15, 201–204 (1997)

    Google Scholar 

  8. S. Shukla, X. Vidal, E.P. Furlani, M.T. Swihart, K.T. Kim, Y.K. Yoon, A. Urbas, P.N. Prasad, Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. ACS Nano 5, 1947–1957 (2011)

    Article  Google Scholar 

  9. R.P. Chaudhary, G. Ummethala, A. Jaiswal, S. Hawal, S. Saxena, S. Shukla, One-step subwavelength patterning of plasmonic gratings in metal-polymer composites. RSC Adv. 6, 113457–113462 (2016)

    Article  Google Scholar 

  10. G. Ummethala, A. Jaiswal, R.P. Chaudhary, S. Hawal, S. Saxena, S. Shukla, Localized polymerization using single photon photoinitiators in two photon process for fabricating subwavelength structures. Polymer 117, 364–369 (2017)

    Article  Google Scholar 

  11. W. Denk, J. Strickler, W. Webb, 2-Photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  12. J.D. Bhawalkar, G.S. He, C.K. Park, C.F. Zhao, G. Ruland, P.N. Prasad, Efficient, two-photon pumped green upconverted cavity lasing in a new dye. Opt. Comm. 124, 33–37 (1996)

    Article  ADS  Google Scholar 

  13. G.S. He, L.X. Yuan, Y.P. Cui, M. Li, P.N. Prasad, Studies of two-photon pumped frequency-upconverted lasing properties of a new dye material. J. Appl. Phys. 81, 2529–2537 (1997)

    Article  ADS  Google Scholar 

  14. G.S. He, L.S. Tan, Q.D. Zheng, P.N. Prasad, Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem. Rev. 108, 1245–1330 (2008)

    Article  Google Scholar 

  15. Y.C. Wang, Y.L. Yan, B. Li, S.X. Qian, Recent progress on two-photon absorbing organic materials. Prog. Phys. 32, 135–164 (2012)

    Google Scholar 

  16. H.B. Xiao, C. Mei, N. Ding, T.T. Wei, Y.Z. Zhang, B. Li, Synthesis and photophysical properties of a novel pyridinium salt based on dipicolinate. J. Photochem. Photobiol. A Chem. 273, 29–33 (2014)

    Article  Google Scholar 

  17. X. He, Y.Q. Liu, X. Du, Y.Q. Yang, B. Xu, W.J. Tian, Y.G. Ma, Excited-state relaxation processes of DPA-DSB: Investigation of the reason for high fluorescence quantum yield of symmetric D–D molecule. Chem. Phys. Lett. 501, 296–299 (2011)

    Article  ADS  Google Scholar 

  18. C.K.R. Namboodiri, S.R. Bongu, P.B. Bisht, R. Mukkamala, B. Chandra, I.S. Aidhen, T.J. Kelly, J.T. Costello, Enhanced two photon absorption cross-section and optical nonlinearity of a quasi-octupolar molecule. J. Photochem. Photobiol. A Chem. 314, 60–65 (2016)

    Article  Google Scholar 

  19. Y.C. Wang, Y.H. Jiang, D.J. Liu, Y.Z. Wang, G.Q. Wang, J.L. Hua, Ultrafast relaxation processes of multi-branched compounds based on 1,3,5-triazine: an investigation of the causes of a high fluorescence quantum yield after modification with perfluoroalkyl chains. J. Lumn. 190, 89–93 (2017)

    Article  ADS  Google Scholar 

  20. G. Bhaskar, Z.K. Ramakrishna, R. Lu, J.M. Twieg, D.J. Hales, E.V. Hagan, T. Stryland, Goodson, III, Investigation of two-photon absorption properties in branched alkene and alkyne chromophores. J. Am. Chem. Soc. 128, 11840–11849 (2006)

    Article  Google Scholar 

  21. M. Williams-Harry, A. Bhaskar, G. Ramakrishna, T. Goodson, I.I.I.M. Imamura, A. Mawatari, K. Nakao, H. Enozawa, T. Nishinaga, M. Iyoda, Giant thienylene-acetylene-ethylene macrocycles with large two-photon absorption cross-section and semishape-persistence. J. Am. Chem. Soc. 130, 3252–3253 (2008)

    Article  Google Scholar 

  22. Y.C. Wang, S.Y. Liu, D.J. Liu, G.Q. Wang, H.B. Xiao, Ultrafast responses of dipolar and V-shaped dipicolinate derivatives with potential applications in the labeling of biomolecules. AIP Adv. 6, 025016 (2016)

    Article  ADS  Google Scholar 

  23. F.S. Meng, B. Li, S.X. Qian, K.C. Chen, H. Tian, Enhanced two-photon properties of tri-branched styryl derivatives based on 1,3,5-triazine. Chem. Lett. 33, 470–471 (2004)

    Article  Google Scholar 

  24. M. Sheik-Bahae, A. Said, T. Wei, D. Hagan, V. Stryland, Sensitive measurement of optical nonlinearities using single beam. IEEE J. Quantum Electron. 26, 760–769 (1990)

    Article  ADS  Google Scholar 

  25. J. Mi, L. Guo, Y. Liu, W. Liu, G. You, S. Qian, Excited-state dynamics of magnesium phthalocyanine thin film. Phys. Lett. A 310, 486–492 (2003)

    Article  ADS  Google Scholar 

  26. Y. Wang, Y. Jiang, J. Hua, H. Tian, S. Qian, Optical limiting properties and ultrafast dynamics of six-branched styryl derivatives based on 1,3,5-triazine. J. Appl. Phys. 110, 033518 (2011)

    Article  ADS  Google Scholar 

  27. J. Mi, B. Li, R. Zhu, W. Liu, S. Qian, F. Meng, H. Tian, Femtosecond response from two copolymers with intense two-photon absorption. Appl. Phys. B Lasers Opt. 80, 541–545 (2005)

    Article  ADS  Google Scholar 

  28. J.F. Ge, Y.T. Lu, Q.F. Xu, W. Liu, N.J. Li, R. Sun, Y.L. Song, J.M. Lu, Third-order nonlinear optical properties of a new type of D–π–D unsymmetrical phenoxazinium chloride with resonance structures. Chem. Phys. 382, 74–79 (2011)

    Article  ADS  Google Scholar 

  29. B. Li, R. Tong, R.Y. Zhu, F.S. Meng, H. Tian, S.X. Qian, The ultrafast dynamics and nonlinear optical properties of tribranched styryl derivatives based on 1,3,5-triazine. J. Phys. Chem. B 109, 10705–10710 (2005)

    Article  Google Scholar 

  30. H.B. Xiao, C. Mei, Y.C. Wang, H. Li, S.X. Qian, H.Y. Yin, Z.S. Xu, Novel triphenylamine-cored two-photon absorbing dyes for labeling of biomolecules. Mater. Chem. Phys. 130, 897–902 (2011)

    Article  Google Scholar 

  31. H.J. Xia, J.T. He, P. Peng, Y.H. Zhou, Y.W. Li, W.J. Tian, Synthesis and photophysical properties of triphenylamine-based dendrimers with 1,3,5-triphenylbenzene cores. Tetrahedron Lett. 48, 5877–5881 (2007)

    Article  Google Scholar 

  32. H.J. Lee, J. Sohn, J. Hwang, S.Y. Park, H. Choi, M. Cha, Triphenylamine-cored bifunctional organic molecules for two-photon absorption and photorefraction. Chem. Mater. 16, 456–465 (2004)

    Article  Google Scholar 

  33. Y.C. Wang, Y.H. Jiang, Y.Z. Wang, G.Q. Wang, D.J. Liu, J.L. Hua, Ultrafast responses of multi-branched compounds based on 1,3,5-triazine: investigation of the reason for enhanced two-photon absorption property. Appl. Phys. A 123, 516 (2017)

    Article  ADS  Google Scholar 

  34. Y.C. Wang, Y.L. Yan, D.J. Liu, G.Q. Wang, S.Z. Pu, Photochromism induced nonlinear optical absorption enhancement and ultrafast responses of several dithienylethene compounds. J. Appl. Phys. 118, 183104 (2015)

    Article  ADS  Google Scholar 

  35. Y.C. Wang, D.K. Zhang, H. Zhou, J.L. Ding, Q. Chen, Y. Xiao, S.X. Qian, Nonlinear optical properties and ultrafast dynamics of three novel boradiazaindacene derivatives. J. Appl. Phys. 108, 033520 (2010)

    Article  ADS  Google Scholar 

  36. Y. Wang, G.S. He, P.N. Prasad, T. Goodson, III, Ultrafast dynamics in multibranched structures with enhanced two-photon absorption. J. Am. Chem. Soc. 127, 10128–10129 (2005)

    Article  Google Scholar 

  37. S.J. Chung, K.S. Kim, T.C. Lin, G.S. He, J. Swiatkiewicz, P.N. Prasad, Cooperative enhancement of two-photon absorption in multi-branched structures. J. Phys. Chem. B 103, 10741–10745 (1999)

    Article  Google Scholar 

  38. G. Ramakrishna, T. Goodson III, Excited-state deactivation of branched two-photon absorbing chromophores: a femtosecond transient absorption investigation. J. Phys. Chem. A 111, 993–1000 (2007)

    Article  Google Scholar 

  39. Y. Wang, S. Yin, J. Liu, L. Yao, G. Wang, D. Liu, B. Jing, L. Cheng, H. Zhong, X. Shi, Q. Fang, S. Qian, Probing ultrafast excited state dynamics and nonlinear absorption properties of three star-shaped conjugated oligomers with 1,3,5-triazine core. RSC Adv. 4, 10960–10967 (2014)

    Article  Google Scholar 

  40. M. Zhou, S. Long, X. Wan, Y. Li, Y.L. Niu, Q.J. Guo, Q.M. Wang, A.D. Xia, Ultrafast relaxation dynamics of phosphine-protected, rod-shaped Au20 clusters: interplay between solvation and surface trapping. Phys. Chem. Chem. Phys. 16, 18288 (2014)

    Article  Google Scholar 

  41. H.J. Yan, B.L. An, Z.F. Fan, X.Y. Zhu, X. Lin, Z.M. Jin, G.H. Ma, Ultrafast terahertz probe of photoexcited free charge carriers in organometal CH3NH3PbI3 perovskite thin film. Appl. Phys. A 122, 414 (2016)

    Article  ADS  Google Scholar 

  42. Y.L. Yan, B. Li, K.J. Liu, Z.W. Dong, X.M. Wang, S.X. Qian, Enhanced two-photon absorption and ultrafast dynamics of a new multibranched chromophore with a dibenzothiophene core. J. Phys. Chem. A 111, 4188–4194 (2007)

    Article  Google Scholar 

  43. K.B. Eisenthal, Intermolecular and intramolecular excited state charge transfer. Laser Chem. 3 145–162 (1983)

    Article  Google Scholar 

  44. S. Park, S. Kim, J. Seo, S. Park, Application of excited-state intramolecular proton transfer (ESIPT) principle to functional polymeric materials. Macromol. Res. 16, 385–395 (2008)

    Article  Google Scholar 

  45. R.B. Sekar, A. Periasamy, Fluorescence resonance energy transfer (FRET) microscopy imaging of live cell protein localizations. J. Cell Biol. 160, 629–633 (2003)

    Article  Google Scholar 

  46. Z.Y. Zhang, G.Q. Zhang, J.X. Wang, S.S. Sun, Z.Z. Zhang, The mechanisms of large stokes shift and fluorescence quantum yields in aniline substituted rhodamine analogue: TICT and PICT. Comput. Theor. Chem. 1095, 44–53 (2016)

    Article  Google Scholar 

  47. J. Su, T. Xu, K. Chen, H. Tian, Electroluminescence properties of twisted dyad 1,8-naphthalic anhydride derivatives. Synth. Met. 91, 249–251 (1997)

    Article  Google Scholar 

  48. T. Yoshihara, S.I. Druzhinin, K.A. Zachariasse, Fast intramolecular charge transfer with a planar rigidized electron/acceptor molecule. J. Am. Chem. Soc. 126, 8535–8539 (2004)

    Article  Google Scholar 

  49. X. Liu, B. Cho., L.-Y. Chan, W.L. Kwan, C.-L.K. Lee, Development of asymmetrical near infrared squaraines with large stokes shift. RSC Adv. 5, 106868–106876 (2015)

    Article  Google Scholar 

  50. G. Haberhauer, R. Gleiter, C. Burkhart, Planarized intramolecular charge transfer: a concept for fluorophores with both large stokes shifts and high fluorescence quantum yields. Chem. A Eur. J. 22, 971–978 (2016)

    Article  Google Scholar 

  51. Q.D. Zheng, S.K. Gupta, G.S. He, L.-S. Tan, P.N. Prasad, Synthesis, characterization, two-photon absorption, and optical limiting properties of ladder-type oligo-p-phenylene-cored chromophores. Adv. Funct. Mater. 18, 2770–2779 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

We sincerely appreciate the financial support of the National Natural Science Foundation of China (11404048, 11604038, and 11375034), the Liaoning Provincial Natural Science Foundation of China (201602061 and 201602062), the Program for Liaoning Educational Committee (L2015071), and the Fundamental Research Funds for the Central Universities (3132018236 and 3132018235).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaochuan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Jiang, Y., Liu, D. et al. Ultrafast responses of two V-shaped compounds with a reverse conjugated structural configuration: an investigation of the reason for the enhanced two-photon absorption cross-section. Appl. Phys. B 124, 98 (2018). https://doi.org/10.1007/s00340-018-6972-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6972-3

Navigation