Skip to main content
Log in

Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of \(> 10^{4}\)) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be \(<2.2 \times 10^{-4}\) for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is \(<0.1\) \(\upmu\)m for a 45 \({\upmu }\)m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below \(10^{-6}\) per gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.M. Steane, Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)

    Article  ADS  Google Scholar 

  2. E. Knill, Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)

    Article  ADS  Google Scholar 

  3. R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation. N. J. Phys. 9(6), 199 (2007)

    Article  MathSciNet  Google Scholar 

  4. J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, High-fidelity universal gate set for \({}^{9}{\text{ Be }}^{ + }\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)

    Article  ADS  Google Scholar 

  5. R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)

    Article  ADS  Google Scholar 

  6. Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81(17), 3631–3634 (1998)

    Article  ADS  Google Scholar 

  7. C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe, Experimental entanglement of four particles. Nature 404(6775), 256–259 (2000)

    Article  ADS  Google Scholar 

  8. M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Experimental violation of a Bell’s inequality with efficient detection. Nature 409(6822), 791–794 (2001)

    Article  ADS  Google Scholar 

  9. D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, R. T., D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412–415 (2003)

  10. J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–466 (2008)

    Article  Google Scholar 

  11. C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016). Also see Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.117.060504

  12. E. Knill, Physics: quantum computing. Nature 463(7280), 441–443 (2010)

    Article  ADS  Google Scholar 

  13. T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)

    Article  ADS  Google Scholar 

  14. D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)

    Article  ADS  Google Scholar 

  15. K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Single-qubit-gate error below \(10^{-4}\) in a trapped ion. Phys. Rev. A 84, 030303 (2011)

    Article  ADS  Google Scholar 

  16. T.P. Harty, D.T.C. Allcock, C.J. Ballance, L. Guidoni, H.A. Janacek, N.M. Linke, D.N. Stacey, D.M. Lucas, High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)

    Article  ADS  Google Scholar 

  17. T.R. Tan, J.P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, D.J. Wineland, Multi-element logic gates for trapped-ion qubits. Nature 528(7582), 380–383 (2015)

    Article  ADS  Google Scholar 

  18. T.R. Tan, J.P. Gaebler, R. Bowler, Y. Lin, J.D. Jost, D. Leibfried, D.J. Wineland, Demonstration of a dressed-state phase gate for trapped ions. Phys. Rev. Lett. 110, 263002 (2013)

    Article  ADS  Google Scholar 

  19. A.C. Wilson, Y. Colombe, K.R. Brown, E. Knill, D. Leibfried, D.J. Wineland, Tunable spin–spin interactions and entanglement of ions in separate potential wells. Nature 512(7512), 57–60 (2014)

    Article  ADS  Google Scholar 

  20. P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos et al., A quantum information processor with trapped ions. N. J. Phys. 15(12), 123012 (2013)

    Article  Google Scholar 

  21. N. Akerman, N. Navon, S. Kotler, Y. Glickman, R. Ozeri, Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser. N. J. Phys. 17(11), 113060 (2015)

    Article  Google Scholar 

  22. Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri, Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014)

    Article  ADS  Google Scholar 

  23. J. Thom, G. Wilpers, E. Riis, A.G. Sinclair, Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems. Opt. Express 21, 18712–18723 (2013)

    Article  ADS  Google Scholar 

  24. E. Theocharous, E.M. Wareham, Ultra-high performance photodetection systems for radiometric applications. Meas. Sci. Technol. 15(6), 1216 (2004)

    Article  ADS  Google Scholar 

  25. E. Theocharous, J. Ishii, N.P. Fox, Absolute linearity measurements on HgCdTe detectors in the infrared region. Appl. Opt. 43, 4182–4188 (2004)

    Article  ADS  Google Scholar 

  26. E. Theocharous, Absolute linearity measurements on a PbS detector in the infrared. Appl. Opt. 45, 2381–2386 (2006)

    Article  ADS  Google Scholar 

  27. E. Theocharous, M.A. Itzler, J. Cheung, C.J. Chunnilall, Characterization of the linearity of response and spatial uniformity of response of two InGaAsP/InP Geiger-mode avalanche photodiodes. IEEE J. Quant. Electron. 46, 1561–1567 (2010)

    Article  ADS  Google Scholar 

  28. C.F. Roos, Ion trap quantum gates with amplitude-modulated laser beams. N. J. Phys. 10(1), 013002 (2008)

    Article  MathSciNet  Google Scholar 

  29. D.B. Leviton, B.J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica. Proc. SPIE 6273, 62732K–62732K–11 (2006)

  30. B.J. Frey, D.B. Leviton, T.J. Madison, Q. Gong, M. Tecza, Cryogenic temperature-dependent refractive index measurements of N-BK7, BaLKN3, SF15, and E-SF03. Proc. SPIE6692, 669205–669205–12 (2007)

  31. D. Allan, Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)

    Article  ADS  Google Scholar 

  32. TEM Messtechnik GmbH. http://www.tem-messtechnik.de/EN/aligna.htm

  33. R. Walder, D.H. Paik, M.S. Bull, C. Sauer, T.T. Perkins, Ultrastable measurement platform: sub-nm drift over hours in 3d at room temperature. Opt. Express 23, 16554–16564 (2015)

    Article  ADS  Google Scholar 

  34. E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek, G. Vrijsen, S.T. Flammia, K.R. Brown, P. Maunz, J. Kim, Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses. Phys. Rev. A 92, 060301 (2015)

    Article  ADS  Google Scholar 

  35. G. Wilpers, P. See, P. Gill, A.G. Sinclair, A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotech. 7, 572–576 (2012)

    Article  ADS  Google Scholar 

  36. G. Wilpers, P. See, P. Gill, A.G. Sinclair, A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access. Appl. Phys. B 111(1), 21–28 (2013)

    Article  ADS  Google Scholar 

  37. K. Mølmer, A. Sørensen, Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)

    Article  ADS  Google Scholar 

  38. A. Sørensen, K. Mølmer, Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)

    Article  ADS  Google Scholar 

  39. G. Kirchmair, J. Benhelm, F. Zhringer, R. Gerritsma, C.F. Roos, R. Blatt, Deterministic entanglement of ions in thermal states of motion. N. J. Phys. 11(2), 023002 (2009)

    Article  Google Scholar 

  40. C.F. Roos, Private communication

  41. M. Palmero, S. Martínez-Garaot, D. Leibfried, D.J. Wineland, J.G. Muga, Fast phase gates with trapped ions. Phys. Rev. A 95, 022328 (2017)

    Article  ADS  Google Scholar 

  42. J. Mizrahi, B. Neyenhuis, K.G. Johnson, W.C. Campbell, C. Senko, D. Hayes, C. Monroe, Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B 114(1), 45–61 (2014)

    Article  ADS  Google Scholar 

  43. P. See, G. Wilpers, P. Gill, A.G. Sinclair, Fabrication of a monolithic array of three dimensional Si-based ion traps. J. Microelectromech. Syst. 22, 1180–1189 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We thank E. Theocharous (NPL) for assistance in detector characterisation. We thank the following individuals for informative discussions: D. Szwer (NPL), D. Lucas and C. Ballance (Oxford), and C. Roos (Innsbruck). This work was funded by the UK National Measurement Office and project EXL01 QESOCAS of the European Metrology Research Programme (EMRP) [Grant Agreement No. 912/2009/EC]. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. JT was supported by the EPSRC Industrial Doctorate Centre in Optics and Photonics. BY was supported by an EPSRC Knowledge Transfer Secondment from Imperial College London.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alastair G. Sinclair.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thom, J., Yuen, B., Wilpers, G. et al. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits. Appl. Phys. B 124, 90 (2018). https://doi.org/10.1007/s00340-018-6955-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6955-4

Navigation