Abstract
We demonstrate a system for intensity stabilisation of optical pulse sequences used in laser-driven quantum control of trapped ions. Intensity instability is minimised by active stabilisation of the power (over a dynamic range of \(> 10^{4}\)) and position of the focused beam at the ion. The fractional Allan deviations in power were found to be \(<2.2 \times 10^{-4}\) for averaging times from 1 to 16,384 s. Over similar times, the absolute Allan deviation of the beam position is \(<0.1\) \(\upmu\)m for a 45 \({\upmu }\)m beam diameter. Using these residual power and position instabilities, we estimate the associated contributions to infidelity in example qubit logic gates to be below \(10^{-6}\) per gate.
Similar content being viewed by others
References
A.M. Steane, Overhead and noise threshold of fault-tolerant quantum error correction. Phys. Rev. A 68, 042322 (2003)
E. Knill, Quantum computing with realistically noisy devices. Nature 434(7029), 39–44 (2005)
R. Raussendorf, J. Harrington, K. Goyal, Topological fault-tolerance in cluster state quantum computation. N. J. Phys. 9(6), 199 (2007)
J.P. Gaebler, T.R. Tan, Y. Lin, Y. Wan, R. Bowler, A.C. Keith, S. Glancy, K. Coakley, E. Knill, D. Leibfried, D.J. Wineland, High-fidelity universal gate set for \({}^{9}{\text{ Be }}^{ + }\) ion qubits. Phys. Rev. Lett. 117, 060505 (2016)
R. Blatt, D. Wineland, Entangled states of trapped atomic ions. Nature 453(7198), 1008–1015 (2008)
Q.A. Turchette, C.S. Wood, B.E. King, C.J. Myatt, D. Leibfried, W.M. Itano, C. Monroe, D.J. Wineland, Deterministic entanglement of two trapped ions. Phys. Rev. Lett. 81(17), 3631–3634 (1998)
C.A. Sackett, D. Kielpinski, B.E. King, C. Langer, V. Meyer, C.J. Myatt, M. Rowe, Q.A. Turchette, W.M. Itano, D.J. Wineland, C. Monroe, Experimental entanglement of four particles. Nature 404(6775), 256–259 (2000)
M.A. Rowe, D. Kielpinski, V. Meyer, C.A. Sackett, W.M. Itano, C. Monroe, D.J. Wineland, Experimental violation of a Bell’s inequality with efficient detection. Nature 409(6822), 791–794 (2001)
D. Leibfried, B. DeMarco, V. Meyer, D. Lucas, M. Barrett, J. Britton, W.M. Itano, B. Jelenkovic, C. Langer, R. T., D. J. Wineland, Experimental demonstration of a robust, high-fidelity geometric two ion-qubit phase gate. Nature 422(6930), 412–415 (2003)
J. Benhelm, G. Kirchmair, C.F. Roos, R. Blatt, Towards fault-tolerant quantum computing with trapped ions. Nat. Phys. 4, 463–466 (2008)
C.J. Ballance, T.P. Harty, N.M. Linke, M.A. Sepiol, D.M. Lucas, High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016). Also see Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevLett.117.060504
E. Knill, Physics: quantum computing. Nature 463(7280), 441–443 (2010)
T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)
D. Leibfried, R. Blatt, C. Monroe, D. Wineland, Quantum dynamics of single trapped ions. Rev. Mod. Phys. 75(1), 281–324 (2003)
K.R. Brown, A.C. Wilson, Y. Colombe, C. Ospelkaus, A.M. Meier, E. Knill, D. Leibfried, D.J. Wineland, Single-qubit-gate error below \(10^{-4}\) in a trapped ion. Phys. Rev. A 84, 030303 (2011)
T.P. Harty, D.T.C. Allcock, C.J. Ballance, L. Guidoni, H.A. Janacek, N.M. Linke, D.N. Stacey, D.M. Lucas, High-fidelity preparation, gates, memory, and readout of a trapped-ion quantum bit. Phys. Rev. Lett. 113, 220501 (2014)
T.R. Tan, J.P. Gaebler, Y. Lin, Y. Wan, R. Bowler, D. Leibfried, D.J. Wineland, Multi-element logic gates for trapped-ion qubits. Nature 528(7582), 380–383 (2015)
T.R. Tan, J.P. Gaebler, R. Bowler, Y. Lin, J.D. Jost, D. Leibfried, D.J. Wineland, Demonstration of a dressed-state phase gate for trapped ions. Phys. Rev. Lett. 110, 263002 (2013)
A.C. Wilson, Y. Colombe, K.R. Brown, E. Knill, D. Leibfried, D.J. Wineland, Tunable spin–spin interactions and entanglement of ions in separate potential wells. Nature 512(7512), 57–60 (2014)
P. Schindler, D. Nigg, T. Monz, J.T. Barreiro, E. Martinez, S.X. Wang, S. Quint, M.F. Brandl, V. Nebendahl, C.F. Roos et al., A quantum information processor with trapped ions. N. J. Phys. 15(12), 123012 (2013)
N. Akerman, N. Navon, S. Kotler, Y. Glickman, R. Ozeri, Universal gate-set for trapped-ion qubits using a narrow linewidth diode laser. N. J. Phys. 17(11), 113060 (2015)
Z. Meir, O. Schwartz, E. Shahmoon, D. Oron, R. Ozeri, Cooperative Lamb shift in a mesoscopic atomic array. Phys. Rev. Lett. 113, 193002 (2014)
J. Thom, G. Wilpers, E. Riis, A.G. Sinclair, Accurate and agile digital control of optical phase, amplitude and frequency for coherent atomic manipulation of atomic systems. Opt. Express 21, 18712–18723 (2013)
E. Theocharous, E.M. Wareham, Ultra-high performance photodetection systems for radiometric applications. Meas. Sci. Technol. 15(6), 1216 (2004)
E. Theocharous, J. Ishii, N.P. Fox, Absolute linearity measurements on HgCdTe detectors in the infrared region. Appl. Opt. 43, 4182–4188 (2004)
E. Theocharous, Absolute linearity measurements on a PbS detector in the infrared. Appl. Opt. 45, 2381–2386 (2006)
E. Theocharous, M.A. Itzler, J. Cheung, C.J. Chunnilall, Characterization of the linearity of response and spatial uniformity of response of two InGaAsP/InP Geiger-mode avalanche photodiodes. IEEE J. Quant. Electron. 46, 1561–1567 (2010)
C.F. Roos, Ion trap quantum gates with amplitude-modulated laser beams. N. J. Phys. 10(1), 013002 (2008)
D.B. Leviton, B.J. Frey, Temperature-dependent absolute refractive index measurements of synthetic fused silica. Proc. SPIE 6273, 62732K–62732K–11 (2006)
B.J. Frey, D.B. Leviton, T.J. Madison, Q. Gong, M. Tecza, Cryogenic temperature-dependent refractive index measurements of N-BK7, BaLKN3, SF15, and E-SF03. Proc. SPIE6692, 669205–669205–12 (2007)
D. Allan, Statistics of atomic frequency standards. Proc. IEEE 54, 221–230 (1966)
TEM Messtechnik GmbH. http://www.tem-messtechnik.de/EN/aligna.htm
R. Walder, D.H. Paik, M.S. Bull, C. Sauer, T.T. Perkins, Ultrastable measurement platform: sub-nm drift over hours in 3d at room temperature. Opt. Express 23, 16554–16564 (2015)
E. Mount, C. Kabytayev, S. Crain, R. Harper, S.-Y. Baek, G. Vrijsen, S.T. Flammia, K.R. Brown, P. Maunz, J. Kim, Error compensation of single-qubit gates in a surface-electrode ion trap using composite pulses. Phys. Rev. A 92, 060301 (2015)
G. Wilpers, P. See, P. Gill, A.G. Sinclair, A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. Nat. Nanotech. 7, 572–576 (2012)
G. Wilpers, P. See, P. Gill, A.G. Sinclair, A compact UHV package for microfabricated ion-trap arrays with direct electronic air-side access. Appl. Phys. B 111(1), 21–28 (2013)
K. Mølmer, A. Sørensen, Multiparticle entanglement of hot trapped ions. Phys. Rev. Lett. 82, 1835–1838 (1999)
A. Sørensen, K. Mølmer, Entanglement and quantum computation with ions in thermal motion. Phys. Rev. A 62, 022311 (2000)
G. Kirchmair, J. Benhelm, F. Zhringer, R. Gerritsma, C.F. Roos, R. Blatt, Deterministic entanglement of ions in thermal states of motion. N. J. Phys. 11(2), 023002 (2009)
C.F. Roos, Private communication
M. Palmero, S. Martínez-Garaot, D. Leibfried, D.J. Wineland, J.G. Muga, Fast phase gates with trapped ions. Phys. Rev. A 95, 022328 (2017)
J. Mizrahi, B. Neyenhuis, K.G. Johnson, W.C. Campbell, C. Senko, D. Hayes, C. Monroe, Quantum control of qubits and atomic motion using ultrafast laser pulses. Appl. Phys. B 114(1), 45–61 (2014)
P. See, G. Wilpers, P. Gill, A.G. Sinclair, Fabrication of a monolithic array of three dimensional Si-based ion traps. J. Microelectromech. Syst. 22, 1180–1189 (2013)
Acknowledgements
We thank E. Theocharous (NPL) for assistance in detector characterisation. We thank the following individuals for informative discussions: D. Szwer (NPL), D. Lucas and C. Ballance (Oxford), and C. Roos (Innsbruck). This work was funded by the UK National Measurement Office and project EXL01 QESOCAS of the European Metrology Research Programme (EMRP) [Grant Agreement No. 912/2009/EC]. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. JT was supported by the EPSRC Industrial Doctorate Centre in Optics and Photonics. BY was supported by an EPSRC Knowledge Transfer Secondment from Imperial College London.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Thom, J., Yuen, B., Wilpers, G. et al. Intensity stabilisation of optical pulse sequences for coherent control of laser-driven qubits. Appl. Phys. B 124, 90 (2018). https://doi.org/10.1007/s00340-018-6955-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00340-018-6955-4