Applied Physics B

, 124:78 | Cite as

Quartz tuning fork-based photodetector for mid-infrared laser spectroscopy

  • Junya Ding
  • Tianbo He
  • Sheng Zhou
  • Lei Zhang
  • Jingsong Li
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications


In this paper, we report a new type of photoelectric detector based on a standard quartz crystal tuning fork (QCTF) with resonant frequency of ~ 32 kHz for spectroscopic applications. Analogous to the photoelectric effect of traditional semiconductor detectors, we utilize the piezoelectric effect of the QCTF to gauge the light intensity. To explore the capabilities of this technique, the impact of incident light beam excitation positions with respect to QCTF on signal amplitude, resonant frequency and Q factor, as well as the dependence on incident light intensity, ambient pressure and temperature, was investigated in detail. Finally, the QCTF-based photodetector was successfully demonstrated for qualitative analysis of gasoline components by combing a broadband tunable external cavity quantum cascade laser.



The authors gratefully acknowledge the financial support from the National Program on Key Research and Development Project (2016YFC0302202), the National Natural Science Foundation of China (61440010, 61675005, 61705002), the Natural Science Foundation of Anhui Province (1508085MF118), the Key Science and Technology Development Program of Anhui Province (1501041136). The Technology Foundation for Selected Overseas Chinese Scholar (J05015143), and Anhui University Personnel Recruiting Project of Academic and Technical Leaders (10117700014).


  1. 1.
    J.M. Friedt, É Carry, Am. J. Phys. 75, 415 (2010)ADSCrossRefGoogle Scholar
  2. 2.
    K. Waszczuk, G. Gula, M. Swiatkowski, J. Olszewski, W. Herwich, Z. Drulis-Kawa, J. Gutowicz, T. GotszalkaL, Sens. Actuators B 170, 7 (2012)CrossRefGoogle Scholar
  3. 3.
    X.D. Su, C.C. Dai, J. Zhang, S.J. O’Shea, Biosens. Bioelectron. 17, 111 (2002)CrossRefGoogle Scholar
  4. 4.
    J. Zhang, C. Dai, X. Su, S.J. O’Shea, Sens. Actuators B 84, 123 (2002)CrossRefGoogle Scholar
  5. 5.
    H. Edwards, L. Taylor, W. Duncan, A.J. Melmed, J. Appl. Phys. 82, 980 (1997)ADSCrossRefGoogle Scholar
  6. 6.
    D. Hussain, J. Song, H. Zhang, X. Meng, Y. Wen, H. Xie, IEEE Sens. J. 17, 2797 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Ctistis, E.H. Frater, S.R. Huisman, J.P. Korterik, J.L. Herek, W.L. Vos, P.W.H. Pinkse, J. Phys. D Appl. Phys. 44, 375502 (2011)CrossRefGoogle Scholar
  8. 8.
    M. Človečko, M. Grajcar, M. Kupka, P. Neilinger, M. Rehák, P. Skyba, F. Vavrek, J. Low Temp. Phys. 187, 573 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    R. Blaauwgeers, M. Blazkova, M. Človečko, V.B. Eltsov, R. de Graaf, J. Hosio, M. Krusius, D. Schmoranzer, W. Schoepe, L. Skrbek, P. Skyba, R.E. Solntsev, D.E. Zmeev, J. Low Temp. Phys. 146, 537 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wang, Y. Sun, B. Qin, F. Cui, J. B. Inst. Technol. 23, 241 (2003)Google Scholar
  11. 11.
    J. Söderkvist, Sens. Actuators A 43, 65 (1994)CrossRefGoogle Scholar
  12. 12.
    J.A. Hedberg, A. Lal, Y. Miyahara, P. Grütter, G. Gervais, M. Hilke, Appl. Phys. Lett. 97, 51 (2010)CrossRefGoogle Scholar
  13. 13.
    S.A. Sampson, S.V. Panchal, A. Mishra, S. Banerjee, S.S. Datar, Microchim. Acta 184, 1659 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Wang, C. Zhao, G.H. Zhao, X.F. Jin, S.M. Zhang, J.B. Zou, Proc. Eng. 120, 857 (2015)CrossRefGoogle Scholar
  15. 15.
    A.A. Kosterev, Yu..A. Bakhirkin, R.F. Curl, F.K. Tittel, Opt. Lett. 27, 1902 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Li, W. Chen, B. Yu, Appl. Spectrosc. Rev. 46, 440 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    K. Liu, X. Guo, H. Yi, W. Chen, W. Zhang, X. Gao, Opt. Lett. 34, 1594 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    K. Liu, J. Li, L. Wang, T. Tan, W. Zhang, X. Gao, W. Chen, F.K. Tittel, Appl. Phys. B 94, 527 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A.A. Kosterev, F.K. Tittel, D.V. Serebryakov, A.L. Malinovsky, I.V. Morozov, Rev. Sci. Instrum. 76, 219 (2005)CrossRefGoogle Scholar
  20. 20.
    L. Dong, A.A. Kosterev, D. Thomazy, F.K. Tittel, Appl. Phys. B 100, 627 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    F.K. Tittel, X. Yu, Y. Tong, Y. He, Y. Ma, Opt. Express 25, 29356 (2017)ADSCrossRefGoogle Scholar
  22. 22.
    A. Sampaolo, P. Patimisco, M. Giglio, M.S. Vitiello, H.E. Beere, D.A. Ritchie, G. Scamarcio, F.K. Tittel, V. Spagnolo, Sensors 16, 439 (2016)CrossRefGoogle Scholar
  23. 23.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1–18 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    L. Zhang, G. Tian, J. Li, B. Yu, Appl. Spectrosc. 68, 1095–1107 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    J. Li, W. Chen, H. Fischer, Appl. Spectrosc. Rev. 48, 523–559 (2013)ADSCrossRefGoogle Scholar
  26. 26.
    A. Schwaighofer, M. Brandstetter, B. Lendl, Chem. Soc. Rev. 46, 5903–5924 (2017)CrossRefGoogle Scholar
  27. 27.
    J. Sun, H. Deng, N.W. Liu, H.L. Wang, B. L.Yu, J.S. Li, Rev. Sci. Instrum. 87, 123101 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    J. Sun, J.Y. Ding, N.W. Liu, G. Yang, J.S. Li, Spectrochim. Acta Part A 191, 532 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Junya Ding
    • 1
    • 2
  • Tianbo He
    • 1
    • 2
  • Sheng Zhou
    • 1
    • 2
  • Lei Zhang
    • 1
    • 2
  • Jingsong Li
    • 1
    • 2
  1. 1.Laser Spectroscopy and Sensing LaboratoryAnhui UniversityHefeiChina
  2. 2.Key Laboratory of Opto-Electronic Information Acquisition and Manipulation of Ministry of EducationAnhui UniversityHefeiChina

Personalised recommendations