Applied Physics B

, 124:76 | Cite as

LIBS coupled with ICP/OES for the spectral analysis of betel leaves

  • I. Rehan
  • K. Rehan
  • S. Sultana
  • M. Z. Khan
  • R. Muhammad


Laser-induced breakdown spectroscopy (LIBS) system was optimized and was applied for the elemental analysis and exposure of the heavy metals in betel leaves in air. Pulsed Nd:YAG (1064 nm) in conjunction with a suitable detector (LIBS 2000+, Ocean Optics, Inc) having the optical resolution of 0.06 nm was used to record the emission spectra from 200 to 720 nm. Elements like Al, Ba, Ca, Cr, Cu, P, Fe, K, Mg, Mn, Na, P, S, Sr, and Zn were found to be present in the samples. The abundances of observed elements were calculated through normalized calibration curve method, integrated intensity ratio method, and calibration free-LIBS approach. Quantitative analyses were accomplished under the assumption of local thermodynamic equilibrium (LTE) and optically thin plasma. LIBS findings were validated by comparing its results with the results obtained using a typical analytical technique of inductively coupled plasma-optical emission spectroscopy (ICP/OES). Limit of detection (LOD) of the LIBS system was also estimated for heavy metals.


  1. 1.
    J. Gunther, Eisenhower: the man and the symbol (Harper, 1952)Google Scholar
  2. 2.
    S. Sadhukhan, P. Guha, AMA-Agricultural Mechanization in Asia Africa and Latin America 42, 47 (2011)Google Scholar
  3. 3.
    W.S. Eipeson, J. Manjunatha, P. Srinivas, T.S. Kanya, Ind. Crops Prod. 32, 118 (2010)CrossRefGoogle Scholar
  4. 4.
    WHO E. C. o. t. P. o. Cancer, Prevention of Cancer: Report (World Health Organization, 1964)Google Scholar
  5. 5.
    S. Delibacak, O. Elmaci, M. Secer, A. Bodur, Int. J. Water 2, 196 (2002)CrossRefGoogle Scholar
  6. 6.
    J.-C. Leblanc, T. Guérin, L. Noël, G. Calamassi-Tran, J.-L. Volatier, P. Verger, Food Additives Contam. 22, 624 (2005)CrossRefGoogle Scholar
  7. 7.
    ÉC. Lima, F. Barbosa Jr., F.J. Krug, Fresenius’ J. Anal. Chem. 369, 496 (2001)CrossRefGoogle Scholar
  8. 8.
    D. Santos, F. Barbosa, A. Tomazelli, F. Krug, J. Nˇbrega, M. Arruda, Anal. Bioanal. Chem. 373, 183 (2002)CrossRefGoogle Scholar
  9. 9.
    K.C. Chan, Y.C. Yip, H.S. Chu, W.C. Sham, J. AOAC Int. 89, 469 (2006)Google Scholar
  10. 10.
    Y. Şahan, F. Basoglu, S. Gücer, Food Chem. 105, 395 (2007)CrossRefGoogle Scholar
  11. 11.
    C.S. Kira, V.A. Maihara, Food Chem. 100, 390 (2007)CrossRefGoogle Scholar
  12. 12.
    G. Doner, A. Ege, Analytica Chimica Acta 520, 217 (2004)CrossRefGoogle Scholar
  13. 13.
    S. Saracoglu, K.O. Saygi, O.D. Uluozlu, M. Tuzen, M. Soylak, Food Chem. 105, 280 (2007)CrossRefGoogle Scholar
  14. 14.
    M. Tuzen, M. Soylak, Food Chem. 102, 1089 (2007)CrossRefGoogle Scholar
  15. 15.
    R. Karoui, C. Blecker, Food Bioprocess Technol. 4, 364 (2011)CrossRefGoogle Scholar
  16. 16.
    H.K. Noh, R. Lu, Postharvest Biol. Technol. 43, 193 (2007)CrossRefGoogle Scholar
  17. 17.
    D.A. Cremers, F.Y. Yueh, J.P. Singh, H. Zhang, Encyclopedia of analytical chemistry (2006)Google Scholar
  18. 18.
    A.W. Miziolek, V. Palleschi, I. Schechter, Laser induced breakdown spectroscopy (Cambridge University Press, 2006)Google Scholar
  19. 19.
    I. Rehan, K. Rehan, S. Sultana, M.O. ul Haq, M.Z.K. Niazi, R. Muhammad, Eur. Phys. J. Appl. Phys. 73, 10701 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    G. Senesi, M. Dell’Aglio, R. Gaudiuso, A. De Giacomo, C. Zaccone, O. De Pascale, T. Miano, M. Capitelli, Environ. Res. 109, 413 (2009)CrossRefGoogle Scholar
  21. 21.
    F. Colao, R. Fantoni, V. Lazic, A. Paolini, F. Fabbri, G. Ori, L. Marinangeli, A. Baliva, Planet. Space Sci. 52, 117 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    G. Nicolodelli, G. Senesi, R. Romano, J. Cabral, I. Perazzoli, B. Marangoni, P. Villas-Boas, D. Milori, Appl. Phys. B 123, 127 (2017)ADSCrossRefGoogle Scholar
  23. 23.
    B.S. Marangoni, K.S.G. Silva, G. Nicolodelli, G.S. Senesi, J.S. Cabral, P.R. Villas-Boas, C.S. Silva, P.C. Teixeira, A.R.A. Nogueira, V.M. Benitesf, and D. M. B. P. Milorib, Anal. Methods 8, 78 (2016)CrossRefGoogle Scholar
  24. 24.
    G. Nicolodelli, B.S. Marangoni, J.S. Cabral, P.R. Villas-Boas, G.S. Senesi, C.H.D. Santos, R.A. Romano, A. Segnini, Y. Lucas, C.R. Montes, and D. M. B. P. Milori, Applied optics 53, 2170 (2014)ADSCrossRefGoogle Scholar
  25. 25.
    B. Carranza, G. Fisher, D. Yoder, Hahn, Spectrochimica Acta Part B: Atomic Spectroscopy 56, 851 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    A. Ali, M.Z. Khan, I. Rehan, K. Rehan, R. Muhammad, J. Spectrosc. 2016 (2016)Google Scholar
  27. 27.
    I. Rehan, Rehan, and S. SultanaGoogle Scholar
  28. 28.
    I. Rehan, R. Muhammad, K. Rehan, K. Karim, and S. Sultana, J. Nutr. Food Sci. 07 (2017)Google Scholar
  29. 29.
    I. Rehan, M.Z. Khan, I. Ali, K. Rehan, S. Sultana, S. Shah, Appl. Phys. B 124, 49 (2018)ADSCrossRefGoogle Scholar
  30. 30.
    M.A.Gondal, T. Hussain, Z.H. Yamani, M.A. Baig, Talanta 69, 1072 (2006)CrossRefGoogle Scholar
  31. 31.
    M.A. Gondal, T. Hussain, Z.H. Yamani, Z. Ahmed, Bull. Environ. Contamination Toxicol. 78, 270 (2007)CrossRefGoogle Scholar
  32. 32.
    Y. Ralchenko, F.C. Jou, D.E. Kelleher, A. Kramida, A. Musgrove, J. Reader, W.L. Wiese, K. J. Olsen (2005)
  33. 33.
    W. Martin, J. Fuhr, D. Kelleher, (National Institute of Standards and Technology, Gaithersburg, MD, 2002)Google Scholar
  34. 34.
    H.R. Griem, Principles of plasma spectroscopy (Cambridge University Press, 2005)Google Scholar
  35. 35.
    D. Heading, J. Wark, G. Bennett, R. Lee, J. Quant. Spectrosc. Radiative Transfer 54, 167 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    A.A.I. Khalil, M.A. Gondal, M. Shemis, I.S. Khan, Appl. Optics 54, 2123 (2015)ADSCrossRefGoogle Scholar
  37. 37.
    A. Ciucci, M. Corsi, V. Palleschi, S. Rastelli, A. Salvetti, E. Tognoni, Appl. Spectrosc. 53, 960 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    I. Rehan, K. Rehan, S. Sultana, M.Z. Khan, Z. Farooq, A. Mateen, M. Humayun, Int. J. Spectrosc. 9 (2017)Google Scholar
  39. 39.
    E. Tognoni, G. Cristoforetti, S. Legnaioli, V. Palleschi, Spectrochimica Acta Part B: Atomic Spectroscopy 65, 1 (2010)ADSCrossRefGoogle Scholar
  40. 40.
    I. Rehan, M.A. Gondal, K. Rehan, Determination of lead content in drilling fueled soil using laser induced spectral analysis and its cross validation using ICP/OES method. Talanta 182, 443–449 (2018)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • I. Rehan
    • 1
  • K. Rehan
    • 1
    • 2
    • 3
  • S. Sultana
    • 4
  • M. Z. Khan
    • 1
  • R. Muhammad
    • 1
  1. 1.Department of Applied PhysicsFederal Urdu University of Arts, Science and TechnologyIslamabadPakistan
  2. 2.State Key Laboratory of Magnetic Resonance and Atomic and Molecular PhysicsWuhan Institute of Physics and Mathematics, CASWuhanPeople’s Republic of China
  3. 3.School of PhysicsUniversity of the Chinese Academy of SciencesBeijingPeople’s Republic of China
  4. 4.Department of ChemistryIslamia College UniversityPeshawarPakistan

Personalised recommendations