Skip to main content
Log in

A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

A high-sensitivity temperature sensor based on photonic crystal fiber Sagnac interferometer is proposed and studied. All holes of the PCF are filled with ethanol with capillarity. The cladding air holes are uniform arrangements. The two air holes around the core are removed to form new core modes with high birefringence. The sensitivities of the temperature can be up to −8.7657 and 16.8142 nm/\(^{\circ }\)C when temperature rises from 45 to 75 \(^{\circ }\)C and the fiber length is 5.05 cm. And when temperature rises from 10 to 45 \(^{\circ }\)C, the sensitivity can reach −7.848 and 16.655 nm/\(^{\circ }\)C with fiber length 2.11 cm. The performance of the selective-filled and the fully-filled PCF with temperature from 45 to 75 \(^{\circ }\)C and fiber length 5.05 cm are analyzed and compared. The fully filling can better achieve PCF’s sensing performance. The simple structure and high sensitivities make the temperature sensor easy to achieve. The temperature sensor with high sensitivities and good linearity has great application value for environmental temperature detecting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P. Russell, J. Lightwave Technol. 299, 358 (2003)

    Google Scholar 

  2. Y. Geng, X. Li, X. Tan, Y. Deng, IEEE Sens. J. 14(1), 167–170 (2014)

    Article  Google Scholar 

  3. M.F.O. Hameed, M.Y. Azab, A.M. Heikal, S.M. El-Hefnawy, S.S.A. Obayya, IEEE Photonics Technol. Lett. 28(1), 59–62 (2015)

    Article  ADS  Google Scholar 

  4. B. Dong, C.Y. Yu , Y.X. Wang, International Conference on Optical Communications and Networks, 1–3 (2015)

  5. P. Gao, X. Chen, W. Feng, Rev. Sci. Instrum. 83(10), 1752–1757 (2012)

    Article  Google Scholar 

  6. P. Zu, C.C. Chan, W.K. Guo, S.L. Wen, Y. Jin, H.F. Liew, C.W. Wei, X. Dong, Sens. Actuators B Chem. 191(2), 19–23 (2014)

    Article  Google Scholar 

  7. C. Zhong, C.L. Zhao, H.F. Wei, J.T. Guo, L. Qi, S.Z. Jin, S.Q. Zhang, Z.X. Zhang, Z.Q. Wang, Opt. Lett. 37(22), 4789 (2012)

    Article  ADS  Google Scholar 

  8. T. Han, Y. Liu, Z. Wang, J. Guo, Z. Wu, S. Wang, Z. Li, W. Zhou, Opt. Express 21(1), 122–8 (2013)

    Article  ADS  Google Scholar 

  9. A.M.R. Pinto, J. Kobelke, K. Schuster, M. Bravo, M. Lopez-Amo, Opt. Lett. 37(2), 202–4 (2012)

    Article  ADS  Google Scholar 

  10. X.Y. Dong, H.Y. Tam, P. Shum, Appl. Phys. Lett. 90(15), 1099–1102 (2007)

    Article  Google Scholar 

  11. Q. Liu, S.G. Li, X. Wang, Sens. Actuators B Chem. 242, 949–955 (2016)

    Article  Google Scholar 

  12. H.W. Zhang, L.C. Duan, W. Shi, Q. Sheng, Y. Lu, J.Q. Yao, Sens. Actuators B Chem. 247, 124–128 (2017)

    Article  Google Scholar 

  13. A.N. Starodumov, L.A. Zenteno, D. Monzon, E. De La Rosa, Appl. Phys. Lett. 70(1), 19–21 (1997)

    Article  ADS  Google Scholar 

  14. J. Zhang, X. Qiao, T. Guo, Y. Weng, R. Wang, Y. Ma, Q. Rong, M. Hu, Z. Feng, J. Lightwave Technol. 29(24), 3640–3644 (2011)

    Article  ADS  Google Scholar 

  15. Y. Cui, P.P. Shum, D.J.J. Hu, G. Wang, G. Humbert, X.Q. Dinh, IEEE Photonics J. 4(5), 1801–1808 (2012)

    Article  Google Scholar 

  16. L.Y. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, L. Yan, Opt. Commun. 336, 73–76 (2015)

    Article  ADS  Google Scholar 

  17. Q. Liu, S.G. Li, M. Shi, Opt. Commun. 381, 1 (2016)

    Article  ADS  Google Scholar 

  18. J. Shi, Y.Y. Wang, D.G. Xu, H.W. Zhang, G.H. Su, L.C. Duan, C. Yan, D.X. Yan, S.J. Fu, J.Q. Yao, IEEE Photonic Tech. L. 28(7), 794–797 (2016)

  19. A.A.A. Pradhan, C. Siau, A. Constantin, P.B.S. Clarke, IEICE Trans. Inf. Syst. E 85C(4), 881–888 (2002)

    Google Scholar 

  20. K. Saitoh, M. Koshiba, IEEE J. Quantum Electron. 38(7), 927–933 (2002)

    Article  ADS  Google Scholar 

  21. Y.J. He, Sens. Actuators B Chem. 183(13), 319–331 (2013)

    Article  Google Scholar 

  22. G. Ghosh, M. Endo, T. Iwasaki, J. Lightwave Technol. 12(8), 1338–1342 (1994)

    Article  ADS  Google Scholar 

  23. K. Nielsen, D. Noordegraaf, T. Sørensen, A. Bjarklev, T.P. Hansen, J. Opt. A Pure Appl. Opt. 7, L13 (2005)

  24. T. Han, Y.G. Liu, Z. Wang, J. Guo, Z. Wu, M. Luo, S. Li, J. Wang, W. Wang, Opt. Express 22(12), 15002–16 (2014)

    Article  ADS  Google Scholar 

  25. Q. Liu, S.G. Li, H.L Chen, Z.K. Fan, J.S. Li, IEEE Photonics J. 7(2), 1–9 (2015)

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61475134, 61505175) and Program of the Natural Science Foundation of Hebei Province (Grant Nos. F2017203193, F2017203110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuguang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, M., Li, S. & Chen, H. A high-sensitivity temperature sensor based on Sagnac interferometer employing photonic crystal fiber fully filled with ethanol. Appl. Phys. B 124, 94 (2018). https://doi.org/10.1007/s00340-018-6944-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6944-7

Navigation