Applied Physics B

, 124:73 | Cite as

An anatomy of strong-field ionization-induced air lasing

  • Jinping Yao
  • Wei Chu
  • Zhaoxiang Liu
  • Jinming Chen
  • Bo Xu
  • Ya Cheng
Article
  • 61 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

It is known that in an intense laser field of a sufficiently high strength combined with a sufficiently long wavelength, i.e., in the regime of the Keldysh parameter γ < 1, photoionization of atoms and molecules can be realized through a quantum tunnel process. The tunnel ionization preferentially occurs from the orbital with the lowest ionization energy, thus the majority of the generated ions will stay on the ground state. It is surprising that tunnel ionization of nitrogen molecules with mid- and near-infrared intense laser fields can initiate strong laser-like emissions, indicating generation of stimulated emissions in molecular nitrogen ions. The physical mechanism behind the observation is still under debate. Here, we review the major progresses we made in the past a few years. The focus is placed on investigations on the lasing action at 391 nm wavelength initiated by either mid-infrared strong laser fields in the wavelength range from 1.2 to 2 µm or near-infrared intense laser fields around 800 nm wavelength. We reveal that the mechanisms of lasing actions are different for the pump lasers in the above two spectral regions. We also show that the coherent wavepackets of molecular nitrogen ions generated in the intense laser fields uniquely allow for efficient nonlinear interaction with light at resonance frequencies.

Notes

Acknowledgements

This work is supported by the National Basic Research Program of China (Grant No. 2014CB921303), National Natural Science Foundation of China (Grant Nos. 11734009, 61575211, 11674340, and 61327902), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB16000000), Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDJ-SSW-SLH010), Project of Shanghai Committee of Science and Technology (Grant No. 17JC1400400) and Shanghai Rising-Star Program (Grant No. 17QA1404600).

References

  1. 1.
    L.V. Keldysh, Sov. Phys. JETP 20, 1307 (1965)MathSciNetGoogle Scholar
  2. 2.
    B. Sheehy, J.D.D. Martin, L.F. DiMauro, P. Agostini, K.J. Schafer, M.B. Gaarde, K.C. Kulander, Phys. Rev. Lett. 83, 5270 (1999)ADSCrossRefGoogle Scholar
  3. 3.
    T. Popmintchev, M.C. Chen, P. Arpin, M.M. Murnane, H.C. Kapteyn, Nat. Photon. 4, 822 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    H. Xiong et al., Opt. Lett. 34, 1747 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    C.I. Blaga, F. Catoire, P. Colosimo, G.G. Paulus, H.G. Muller, P. Agostini, L.F. DiMauro, Nat. Phys. 5, 335 (2009)CrossRefGoogle Scholar
  6. 6.
    W. Quan et al., Phys. Rev. Lett. 103, 093001 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    Y.L. Wang et al., Phys. Rev. A 95, 063415 (2017)ADSCrossRefGoogle Scholar
  8. 8.
    B. Wolter, M.G. Pullen, M. Baudisch, M. Sclafani, M. Hemmer, A. Senftleben, C.D. Schröter, J. Ullrich, R. Moshammer, J. Biegert, Phys. Rev. X 5, 021034 (2015)Google Scholar
  9. 9.
    T. Popmintchev et al., Science 336, 1287 (2012)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    C. Matteo et al., Phys. Rev. Lett. 110, 253901 (2013)CrossRefGoogle Scholar
  11. 11.
    J. Yao, B. Zeng, H. Xu, G. Li, W. Chu, J. Ni, H. Zhang, S.L. Chin, Y. Cheng, Z. Xu, Phys. Rev. A 84, 051802(R) (2011)ADSCrossRefGoogle Scholar
  12. 12.
    J. Yao et al., New J. Phys. 15, 023046 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    Y. Liu, P. Ding, G. Lambert, A. Houard, V. Tikhonchuk, A. Mysyrowicz, Phys. Rev. Lett. 115, 133203 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Liu et al., Phys. Rev. Lett. 119, 203205 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    J. Yao et al., Phys. Rev. Lett. 116, 143007 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    H. Xu, E. Lötstedt, A. Iwasaki, K. Yamanouchi, Nat. Commun. 6, 8347 (2015)ADSCrossRefGoogle Scholar
  17. 17.
    H. Xu, E. Lötstedt, T. Ando, A. Iwasaki, K. Yamanouchi, Phys. Rev. A 96, 041401(R) (2017)ADSCrossRefGoogle Scholar
  18. 18.
    A. Azarm, P. Corkum, P. Polynkin, Phys. Rev. A 96, 051401(R) (2017)ADSCrossRefGoogle Scholar
  19. 19.
    D. Kartashov et al., Research in Optical Sciences, OSA Technical Digest (Optical Society of America, 2014), paper HTh4B.5Google Scholar
  20. 20.
    V.A. Vaulin, V.N. Slinko, S.S. Sulakshin, Sov. J. Quantum Electron. 18, 1457 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    Q. Luo, W. Liu, S.L. Chin, Appl. Phys. B 76, 337 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    A. Dogariu, J.B. Michael, M.O. Scully, R.B. Miles, Science 331, 442 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    A.J. Traverso, R. Sanchez-Gonzalez, L. Yuan, K. Wang, D.V. Voronine, A.M. Zheltikov, Y. Rostovtsev, V.A. Sautenkov, A.V. Sokolov, S.W. North, M.O. Scully, Proc. Natl. Acad. Sci. 109, 15185 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    D. Kartashov, S. Ališauskas, G. Andriukaitis, A. Pugžlys, M. Shneider, A. Zheltikov, S.L. Chin, A. Baltuška, Phys. Rev. A 86, 033831 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    D. Kartashov, S. Ališauskas, A. Baltuška, A. Schmitt-Sody, W. Roach, P. Polynkin, Phys. Rev. A 88, 041805(R) (2013)ADSCrossRefGoogle Scholar
  26. 26.
    S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Mysyrowicz, Opt. Express 22, 12750 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    J. Yao et al., Opt. Express 22, 19005 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    S. Mitryukovskiy, Y. Liu, P. Ding, A. Houard, A. Couairon, A. Mysyrowicz, Phys. Rev. Lett. 114, 063003 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    P. Ding, S. Mitryukovskiy, A. Houard, E. Oliva, A. Couairon, A. Mysyrowicz, Y. Liu, Opt. Express 22, 29964 (2014)ADSCrossRefGoogle Scholar
  30. 30.
    H. Xie, G. Li, W. Chu, B. Zeng, J. Yao, C. Jing, Z. Li, Y. Cheng, New J. Phys. 17, 073009 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    P. Ding, E. Oliva, A. Houard, A. Mysyrowicz, Y. Liu, Phys. Rev. A 94, 043824 (2016)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Li, W. Chu, B. Zeng, J. Yao, G. Li, H. Xie, Z. Wang, Y. Cheng, J. Phys. B: At. Mol. Opt. Phys. 49, 065602 (2016)ADSCrossRefGoogle Scholar
  33. 33.
    A. Dogariu, R.B. Miles, Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2013), paper QW1E.1Google Scholar
  34. 34.
    A. Laurain, M. Scheller, P. Polynkin, Phys. Rev. Lett. 113, 253901 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    H. Zhang et al., Phys. Rev. X 3, 041009 (2013)Google Scholar
  36. 36.
    D. Kartashov, J. Möhring, G. Andriukaitis, A. Pugžlys, A. Zheltikov, M. Motzkus, A. Baltuška, Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2012), paper QTh4E.6Google Scholar
  37. 37.
    W. Chu et al., Laser Phys. Lett. 11, 015301 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Liu, Y. Brelet, G. Point, A. Houard, A. Mysyrowicz, Opt. Express 21, 22791 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    T. Wang, J. Ju, J. Daigle, S. Yuan, R. Li, S.L. Chin, Laser Phys. Lett. 10, 125401 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    J. Ni et al., Opt. Express 21, 8746 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    T. Wang, J.F. Daigle, J. Ju, S. Yuan, R. Li, S.L. Chin, Phys. Rev. A 88, 053429 (2013)ADSCrossRefGoogle Scholar
  42. 42.
    G. Andriukaitis, J. Möhring, D. Kartashov, A. Pugžlys, A. Zheltikov, M. Motzkus, A. Baltuška, EPJ Web of Conferences 41, 10004 (2013).  https://doi.org/10.1051/epjconf/20134110004
  43. 43.
    H. Zhang, C. Jing, G. Li, H. Xie, J. Yao, B. Zeng, W. Chu, J. Ni, H. Xu, Y. Cheng, Phys. Rev. A 88, 063417 (2013)ADSCrossRefGoogle Scholar
  44. 44.
    B. Zeng, W. Chu, G. Li, J. Yao, H. Zhang, J. Ni, C. Jing, H. Xie, Y. Cheng, Phys. Rev. A 89, 042508 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    H. Xie et al., Phys. Rev. A 90, 042504 (2014)ADSCrossRefGoogle Scholar
  46. 46.
    G. Point, Y. Liu, Y. Brelet, S. Mitryukovskiy, P. Ding, A. Houard, A. Mysyrowicz, Opt. Lett. 39, 1725 (2014)ADSCrossRefGoogle Scholar
  47. 47.
    P. Wang, C. Wu, M. Lei, B. Dai, H. Yang, H. Jiang, Q. Gong, Phys. Rev. A 92, 063412 (2015)ADSCrossRefGoogle Scholar
  48. 48.
    G. Li et al., Phys. Rev. A 89, 033833 (2014)ADSCrossRefGoogle Scholar
  49. 49.
    J. Ni et al., Opt. Lett. 39, 2250 (2014)ADSCrossRefGoogle Scholar
  50. 50.
    Z. Li, B. Zeng, W. Chu, H. Xie, J. Yao, G. Li, L. Qiao, Z. Wang, Y. Cheng, Sci. Rep. 6, 21504 (2016)ADSCrossRefGoogle Scholar
  51. 51.
    L. Arissian, B. Kamer, A. Rasoulof, Opt. Commun. 369, 215 (2016)ADSCrossRefGoogle Scholar
  52. 52.
    C. Jing et al., Laser Phys. Lett. 12, 015301 (2015)ADSCrossRefGoogle Scholar
  53. 53.
    C. Jing et al., Opt. Express 22, 3151 (2014)ADSCrossRefGoogle Scholar
  54. 54.
    M. Lei, C. Wu, A. Zhang, Q. Gong, H. Jiang, Opt. Express 25, 4535 (2017)ADSCrossRefGoogle Scholar
  55. 55.
    C. Jing, J. Yao, Z. Li, J. Ni, B. Zeng, W. Chu, G. Li, H. Xie, Y. Cheng, J. Phys. B: At. Mol. Opt. Phys. 48, 094001 (2015)ADSCrossRefGoogle Scholar
  56. 56.
    X. Zhong, Z. Miao, L. Zhang, Q. Liang, M. Lei, H. Jiang, Y. Liu, Q. Gong, C. Wu, Phys. Rev. A 96, 043422 (2017)ADSCrossRefGoogle Scholar
  57. 57.
    H. Li, H. Zang, Y. Su, Y. Fu, H. Xu, J. Opt. 19, 124006 (2017)ADSCrossRefGoogle Scholar
  58. 58.
    D. Kartashov et al., Conference on lasers and electro-optics, OSA technical digest (Optical Society of America, 2015), paper SM2N.3Google Scholar
  59. 59.
    S.L. Chin, H. Xu, J. Phys. B: At. Mol. Opt. Phys. 49, 222003 (2016)ADSCrossRefGoogle Scholar
  60. 60.
    A. Lofthus, P.H. Krupenie, J. Phys. Chem. Ref. Data 6, 113 (1977)ADSCrossRefGoogle Scholar
  61. 61.
    J. Yao, W. Chu, Z. Liu, B. Xu, J. Chen, Y. Cheng, New J. Phys. 20, 033035 (2018)CrossRefGoogle Scholar
  62. 62.
    V. Loriot, E. Hertz, O. Faucher, B. Lavorel, Opt. Express 18, 3011 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    Z. Liu, J. Yao, J. Chen, B. Xu, W. Chu, Y. Cheng, Phys. Rev. Lett. 120, 083205 (2018)ADSCrossRefGoogle Scholar
  64. 64.
    H. Yanagi, A. Yoshiki, S. Hotta, S. Kobayashi, Appl. Phys. Lett. 83, 1941 (2003)ADSCrossRefGoogle Scholar
  65. 65.
    A. Becker, A.D. Bandrauk, S.L. Chin, Chem. Phys. Lett. 343, 345 (2001)ADSCrossRefGoogle Scholar
  66. 66.
    J. Jolly, A. Plain, Chem. Phys. Lett. 100, 425 (1983)ADSCrossRefGoogle Scholar
  67. 67.
    P.L. Baldeck, R.R. Alfano, G.P. Agrawal, Appl. Phys. Lett. 52, 1939 (1988)ADSCrossRefGoogle Scholar
  68. 68.
    P.P. Bey, J.F. Giuliani, H. Rabin, Phys. Lett. A 26, 128 (1968)ADSCrossRefGoogle Scholar
  69. 69.
    R.R. Laher, F.R. Gilmore, J. Phys. Chem. Ref. Data 20, 685 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    J. Yao, W. Chu, C. Tian, Z. Li, Z. Wang, Y. Cheng, arXiv:1608.05183 (2016)
  71. 71.
    B. Xu et al., Free-space N2 + lasers generated in strong laser fields: the role of molecular vibration (2018) (in preparation) Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine MechanicsChinese Academy of SciencesShanghaiChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physical Science and TechnologyShanghaiTech UniversityShanghaiChina
  4. 4.State Key Laboratory of Precision SpectroscopyEast China Normal UniversityShanghaiChina
  5. 5.Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanChina
  6. 6.XXL—The Extreme Optoelectromechanics LaboratoryEast China Normal UniversityShanghaiChina

Personalised recommendations