Advertisement

Applied Physics B

, 124:66 | Cite as

Mid-infrared heterodyne phase-sensitive dispersion spectroscopy using difference frequency generation

  • Pedro Martín-Mateos
  • Borja Jerez
  • Cristina de Dios
  • Pablo Acedo
Article
  • 262 Downloads
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

Difference frequency generation is a flexible method for the generation of mid-infrared light. It allows downshifting a near-infrared optical signal to the mid-infrared region by means of a nonlinear process, enabling to take full advantage of the availability of optical communications components for the generation of the multi-tone signals that are characteristic of molecular dispersion spectroscopic methods. In this way, it is possible to avoid several issues associated with optical instruments in which directly modulated mid-infrared quantum cascade lasers are employed. In this paper, we take full advantage of this benefit to implement the first heterodyne phase sensitive dispersion spectroscopy gas sensor based on a difference frequency generation source. The performance of the instrument is validated by detecting with high sensitivity methane in the 3.4 µm mid-infrared band.

Notes

Acknowledgements

The authors would like to thank the Spanish Ministry of Economy and Competitiveness for supporting the project under the Grant TEC-2014-52147-R (MOSSI). The work by Borja Jerez has been performed in the frame of a FPU Program, #FPU014/06338, granted by the Spanish Ministry of Education, Culture and Sports.

References

  1. 1.
    I.D. Lindsay, P. Groß, C.J. Lee, B. Adhimoolam, K.-J. Boller, Opt. Express 14, 12341 (2006)ADSCrossRefGoogle Scholar
  2. 2.
    J. Manne, A. Lim, W. Jäger, J. Tulip, Appl. Opt. 50, E112 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    H. Moser, W. Pölz, J.P. Waclawek, J. Ofner, B. Lendl, Anal. Bioanal. Chem. 409, 729 (2016)CrossRefGoogle Scholar
  4. 4.
    G.B. Rieker, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48, 5546 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    K. Sun, X. Chao, R. Sur, C.S. Goldenstein, J.B. Jeffries, R.K. Hanson, Meas. Sci. Technol. 24, 125203 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    M. Wei, R. Kan, B. Chen, Z. Xu, C. Yang, X. Chen, H. Xia, M. Hu, Y. He, J. Liu, X. Fan, W. Wang, Appl. Phys. B 123, 149 (2017)ADSCrossRefGoogle Scholar
  7. 7.
    V. Spagnolo, P. Patimisco, S. Borri, G. Scamarcio, B.E. Bernacki, J. Kriesel, Opt. Lett. 37, 4461 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    J. Peltola, T. Hieta, M. Vainio, Opt. Lett. 40, 2933 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    G. Wysocki, D. Weidmann, Opt. Express 18, 26123 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, Appl. Phys. Lett. 103, 191107 (2013)ADSCrossRefGoogle Scholar
  11. 11.
    P. Martín-Mateos, P. Acedo, Opt. Express 22, 15143 (2014)ADSCrossRefGoogle Scholar
  12. 12.
    P. Martín-Mateos, J. Hayden, P. Acedo, B. Lendl, Anal. Chem. 89, 5916 (2017)CrossRefGoogle Scholar
  13. 13.
    W. Ding, L. Sun, L. Yi, X. Ming, Appl. Opt. 55, 8698 (2016)ADSCrossRefGoogle Scholar
  14. 14.
    L. Zhang, G. Tian, J. Li, B. Yu, Appl. Spectrosc. 68, 1095 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    J. Faist, F. Capasso, D.L. Sivco, C. Sirtori, A.L. Hutchinson, A.Y. Cho, Science 264, 553 (1994)ADSCrossRefGoogle Scholar
  16. 16.
    R.F. Curl, F. Capasso, C. Gmachl, A.A. Kosterev, B. McManus, R. Lewicki, M. Pusharsky, G. Wysocki, F.K. Tittel, Chem. Phys. Lett. 487, 1 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    M.R. Alcaráz, A. Schwaighofer, C. Kristament, G. Ramer, M. Brandstetter, H. Goicoechea, B. Lendl, Anal. Chem. 87, 6980 (2015)CrossRefGoogle Scholar
  18. 18.
    K.P. Petrov, S. Waltman, U. Simon, R.F. Curl, F.K. Tittel, E.J. Dlugokencky, L.W. Hollberg, Appl. Phys. B 61, 553–558 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    H.Y. Clark, L. Corner, W. Denzer, G. Hancock, A. Hutchinson, M. Islam, R. Peverall, G.A.D. Ritchie, Chem. Phys. Lett. 399, 102 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    E. Baumann, F.R. Giorgetta, W.C. Swann, A.M. Zolot, I. Coddington, N.R. Newbury, Phys. Rev. A 84, 62513 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    P. Maddaloni, P. Malara, G. Gagliardi, P. De Natale, Appl. Phys. B 85, 219 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    J.J. Scherer, J.B. Paul, H.J. Jost, M.L. Fischer, Appl. Phys. B 110, 271 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    D. Richter, B.P. Wert, A. Fried, P. Weibring, J.G. Walega, J.W.C. White, B.H. Vaughn, F.K. Tittel, Opt. Lett. 34, 172 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    D. Richter, A. Fried, B.P. Wert, J.G. Walega, F.K. Tittel, Appl. Phys. B. 75, 281 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    A. Hangauer, G. Spinner, M. Nikodem, G. Wysocki, Opt. Express 22, 23439 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    M. Nikodem, K. Krzempek, R. Karwat, G. Dudzik, K. Abramski, G. Wysocki, Opt. Lett. 39, 4420 (2014)ADSCrossRefGoogle Scholar
  27. 27.
    K. Krzempek, K.M. Abramski, M. Nikodem, Laser Phys. Lett. 14, 95702 (2017)CrossRefGoogle Scholar
  28. 28.
    S. Paul, P. Martín-Mateos, N. Heermeier, F. Küppers, P. Acedo, ACS Photon. 4, 2664 (2017)CrossRefGoogle Scholar
  29. 29.
    R. Szedlak, J. Hayden, P. Martín-Mateos, M. Holzbauer, A. Harrer, B. Schwarz, B. Hinkov, D. MacFarland, T. Zederbauer, H. Detz, A.M. Andrews, W. Schrenk, P. Acedo, B. Lendl, G. Strasser, Opt. Eng. 57, 11005 (2017)CrossRefGoogle Scholar
  30. 30.
    P. Martín-Mateos, J. Hayden, P. Acedo, B. Lendl, In Proceedings of SPIE 10110, Photonic Instrumentation Engineering IV, 1011018, (2017)Google Scholar
  31. 31.
    K. Krzempek, G. Sobon, K.M. Abramski, Opt. Express 21, 20023 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electronics Technology DepartmentUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations