Advertisement

Applied Physics B

, 124:61 | Cite as

Two-dimensional temperature and carbon dioxide concentration profiles in atmospheric laminar diffusion flames measured by mid-infrared direct absorption spectroscopy at 4.2 μm

  • Xunchen Liu
  • Guoyong Zhang
  • Yan Huang
  • Yizun Wang
  • Fei Qi
Article
Part of the following topical collections:
  1. Mid-infrared and THz Laser Sources and Applications

Abstract

We present a multi-line flame thermometry technique based on mid-infrared direct absorption spectroscopy of carbon dioxide at its \(v_3\) fundamental around 4.2 μm that is particularly suitable for sooting flames. Temperature and concentration profiles of gas phase molecules in a flame are important characteristics to understand its flame structure and combustion chemistry. One of the standard laboratory flames to analyze polycyclic aromatic hydrocarbons (PAH) and soot formation is laminar non-premixed co-flow flame, but PAH and soot introduce artifact to most non-contact optical measurements. Here we report an accurate diagnostic method of the temperature and concentration profiles of CO2 in ethylene diffusion flames by measuring its \(v_3\) vibrational fundamental. An interband cascade laser was used to probe the R-branch bandhead at 4.2 μm, which is highly sensitive to temperature change, free from soot interference and ambient background. Calibration measurement was carried out both in a low-pressure Herriott cell and an atmospheric pressure tube furnace up to 1550 K to obtain spectroscopic parameters for high-temperature spectra. In our co-flow flame measurement, two-dimensional line-of-sight optical depth of an ethylene/N2 laminar sooting flame was recorded by dual-beam absorption scheme. The axially symmetrical attenuation coefficient profile of CO2 in the co-flow flame was reconstructed from the optical depth by Abel inversion. Spatially resolved flame temperature and in situ CO2 volume fraction profiles were derived from the calibrated CO2 spectroscopic parameters and compared with temperature profiles measured by two-line atomic fluorescence.

Notes

Acknowledgements

The authors thank Prof. Bin Zhou from Southeast University for helpful discussion about the interpretation of non-soot absorbance. Financial support by National Natural Science Foundation of China (51606123, 91541201) is gratefully acknowledged.

References

  1. 1.
    H. Richter, J.B. Howard, Prog. Energy Combust. Sci. 26(4–6), 565 (2000)CrossRefGoogle Scholar
  2. 2.
    C.S. Mcenally, L.D. Pfefferle, A.M. Schaffer, M.B. Long, R.K. Mohammed, M.D. Smooke, M.B. Colkei, Proc. Combust. Inst. 28(2), 2063 (2000)CrossRefGoogle Scholar
  3. 3.
    S. Will, S. Schraml, A. Leipert, Symp. Int. Combust. 26(2), 2277 (1996)CrossRefGoogle Scholar
  4. 4.
    C. Schulz, B.F. Kock, M. Hofmann, H. Michelsen, S. Will, B. Bougie, R. Suntz, G. Smallwood, Appl. Phys. B 83(3), 333 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    R.J. Santoro, H.G. Semerjian, Symp. Int. Combust. 20(1), 997 (1985)CrossRefGoogle Scholar
  6. 6.
    S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, Combust. Flame 115(1–2), 253 (1998)CrossRefGoogle Scholar
  7. 7.
    A. D’Anna, A. Rolando, C. Allouis, P. Minutolo, A. D’Alessio, Proc. Combust. Inst. 30(1), 1449 (2005)CrossRefGoogle Scholar
  8. 8.
    M.D. Smooke, M.B. Long, B.C. Connelly, M.B. Colket, R.J. Hall, Combust. Flame 143(4), 613 (2005)CrossRefGoogle Scholar
  9. 9.
    O. Angrill, H. Geitlinger, T. Streibel, R. Suntz, H. Bockhorn, Proc. Combust. Inst. 28(2), 2643 (2000)CrossRefGoogle Scholar
  10. 10.
    H. Xu, F. Liu, S. Sun, Y. Zhao, S. Meng, W. Tang, Combust. Flame 177, 67 (2017)CrossRefGoogle Scholar
  11. 11.
    H. Jin, Y. Wang, K. Zhang, H. Guo, F. Qi, Proc. Combust. Inst. 34(1), 779 (2013)CrossRefGoogle Scholar
  12. 12.
    P.B. Kuhn, B. Ma, B.C. Connelly, M.D. Smooke, M.B. Long, Proc. Combust. Inst. 33(1), 743 (2011)CrossRefGoogle Scholar
  13. 13.
    D.D. Das, W.J. Cannella, C.S. McEnally, C.J. Mueller, L.D. Pfefferle, Proc. Combust. Inst. 36(1), 871 (2017)CrossRefGoogle Scholar
  14. 14.
    H. Liu, S. Zheng, H. Zhou, IEEE Trans. Instrum. Meas. 66(2), 315 (2017)CrossRefGoogle Scholar
  15. 15.
    R.L. Farrow, R.P. Lucht, W.L. Flower, R.E. Palmer, Symp. Int. Combust. 20(1), 1307 (1985)CrossRefGoogle Scholar
  16. 16.
    L.R. Boedeker, G.M. Dobbs, Symp. Int. Combust. 21(1), 1097 (1988)CrossRefGoogle Scholar
  17. 17.
    L.R. Boedeker, G.M. Dobbs, Combust. Sci. Technol. 46(3–6), 301 (1986)CrossRefGoogle Scholar
  18. 18.
    C.J. Kliewer, Y. Gao, T. Seeger, J. Kiefer, B.D. Patterson, T.B. Settersten, Proc. Combust. Inst. 33(1), 831 (2011)CrossRefGoogle Scholar
  19. 19.
    D. Gu, Z. Sun, G.J. Nathan, P.R. Medwell, Z.T. Alwahabi, B.B. Dally, Combust. Flame 167, 481 (2016)CrossRefGoogle Scholar
  20. 20.
    Z. Sun, B. Dally, G. Nathan, Z. Alwahabi, Combust. Flame 175, 270 (2017)CrossRefGoogle Scholar
  21. 21.
    C. Liu, L. Xu, J. Chen, Z. Cao, Y. Lin, W. Cai, Opt. Express 23(17), 22494 (2015)ADSCrossRefGoogle Scholar
  22. 22.
    C. Liu, L. Xu, F. Li, Z. Cao, S.A. Tsekenis, H. McCann, Appl. Phys. B 120(3), 407 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    Z. Qu, R. Ghorbani, D. Valiev, F.M. Schmidt, Opt. Express 23(12), 16492 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    G. Zhang, J. Liu, Z. Xu, Y. He, R. Kan, Appl. Phys. B 122(1), 3 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L. Zhang, F. Wang, H. Zhang, J. Yan, K. Cen, Chin. Opt. Lett. 14(11), 111201 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    S. Wagner, M. Klein, T. Kathrotia, U. Riedel, T. Kissel, A. Dreizler, V. Ebert, Appl. Phys. B 109(3), 533 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    M.P. Esplin, R.J. Huppi, G.A. Vanasse, Appl. Opt. 21(9), 1681 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    S.P. Bharadwaj, M.F. Modest, J. Quant. Spectrosc. Radiat. Transf. 103(1), 146 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    T. Ren, M.F. Modest, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transf. 151, 198 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    V. Evseev, A. Fateev, S. Clausen, J. Quant. Spectrosc. Radiat. Transf. 113(17), 2222 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    R.M. Mihalcea, D.S. Baer, R.K. Hanson, Appl. Opt. 37(36), 8341 (1998)ADSCrossRefGoogle Scholar
  32. 32.
    M.E. Webber, S. Kim, S.T. Sanders, D.S. Baer, R.K. Hanson, Y. Ikeda, Appl. Opt. 40(6), 821 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    K. Sun, R. Sur, X. Chao, J.B. Jeffries, R.K. Hanson, R.J. Pummill, K.J. Whitty, Proc. Combust. Inst. 34(2), 3593 (2013)CrossRefGoogle Scholar
  34. 34.
    R. Sur, K. Sun, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 115(1), 9 (2014)ADSCrossRefGoogle Scholar
  35. 35.
    R. Sur, K. Sun, J.B. Jeffries, J.G. Socha, R.K. Hanson, Fuel 150, 102 (2015)CrossRefGoogle Scholar
  36. 36.
    A. Klose, G. Ycas, F.C. Cruz, D.L. Maser, S.A. Diddams, Appl. Phys. B 122(4), 1 (2016)CrossRefGoogle Scholar
  37. 37.
    T. Cai, G. Gao, M. Wang, G. Wang, Y. Liu, X. Gao, Appl. Phys. B 118(3), 471 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 90(3–4), 619 (2008)ADSCrossRefGoogle Scholar
  39. 39.
    A. Farooq, J.B. Jeffries, R.K. Hanson, Appl. Opt. 48(35), 6740 (2009)ADSCrossRefGoogle Scholar
  40. 40.
    P. Nau, J. Koppmann, A. Lackner, K. Kohse-Höinghaus, A. Brockhinke, Appl. Phys. B 118(3), 361 (2015)ADSCrossRefGoogle Scholar
  41. 41.
    R.M. Spearrin, W. Ren, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 116(4) 855 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    R.M. Spearrin, C.S. Goldenstein, I.A. Schultz, J.B. Jeffries, R.K. Hanson, Appl. Phys. B 117(2) 689 (2014)CrossRefGoogle Scholar
  43. 43.
    K. Wu, F. Li, X. Cheng, Y. Yang, X. Lin, Y. Xia, Appl. Phys. B 117(2), 659 (2014)CrossRefGoogle Scholar
  44. 44.
    J.J. Girard, R.M. Spearrin, C.S. Goldenstein, R.K. Hanson, Combust. Flame 178, 158 (2017)CrossRefGoogle Scholar
  45. 45.
    L.H. Ma, L.Y. Lau, W. Ren, Appl. Phys. B 123(3), 83 (2017)ADSCrossRefGoogle Scholar
  46. 46.
    R. Villarreal, P.L. Varghese, Appl. Opt. 44(31), 6786 (2005)ADSCrossRefGoogle Scholar
  47. 47.
    S. Wagner, B.T. Fisher, J.W. Fleming, V. Ebert, Proc. Combust. Inst. 32(1), 839 (2009)CrossRefGoogle Scholar
  48. 48.
    J.A. Silver, D.J. Kane, P.S. Greenberg, Appl. Opt. 34(15), 2787 (1995)ADSCrossRefGoogle Scholar
  49. 49.
    W. Cai, D.J. Ewing, L. Ma, Comput. Phys. Commun. 179(4), 250 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    P.E. Best, P.L. Chien, R.M. Carangelo, P.R. Solomon, M. Danchak, I. Ilovici, Combust. Flame 85(3–4), 309 (1991)CrossRefGoogle Scholar
  51. 51.
    D.R. Snelling, K.A. Thomson, G.J. Smallwood, Ö.L. Gülder, Appl. Opt. 38(12), 2478 (1999)ADSCrossRefGoogle Scholar
  52. 52.
    S. Johnson, Faddeeva W function implementation. http://ab-initio.mit.edu/wiki/index.php/faddeeva_w. Accessed 13 Mar 2018
  53. 53.
    C.J. Dasch, Appl. Opt. 31(8), 1146 (1992)ADSCrossRefGoogle Scholar
  54. 54.
    V. Dribinski, A. Ossadtchi, V.A. Mandelshtam, H. Reisler, Rev. Sci. Instrum. 73(7), 2634 (2002)ADSCrossRefGoogle Scholar
  55. 55.
    Y. Zhang, C. Cao, Y. Li, W. Yuan, X. Yang, J. Yang, F. Qi, T.P. Huang, Y.Y. Lee, Energy Fuels 31(12), 14270 (2017)CrossRefGoogle Scholar
  56. 56.
    L.S. Rothman, I.E. Gordon, R.J. Barber, H. Dothe, R.R. Gamache, A. Goldman, V.I. Perevalov, S.A. Tashkun, J. Tennyson, J. Quant. Spectrosc. Radiat. Transf. 111(15), 2139 (2010)ADSCrossRefGoogle Scholar
  57. 57.
    N.H. Ngo, D. Lisak, H. Tran, J.M. Hartmann, J. Quant. Spectrosc. Radiat. Transf. 129, 89 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations