Advertisement

Applied Physics B

, 124:60 | Cite as

Pulse shaping in the presence of enormous second-order dispersion in Al:ZnO/ZnO epsilon-near-zero metamaterial

  • Priscilla Kelly
  • Lyuba Kuznetsova
Article
  • 174 Downloads

Abstract

A numerical study of the ultra-short pulse propagation in the aluminum-doped zinc oxide multi-layered metamaterial at the epsilon-near-zero spectral point is presented. The Drude model for dielectric permittivity and comparison with recent experimental data predict that damping frequency γD has the highest impact on the material losses and results in enormous second-order dispersion. Numerical simulations using both, the finite-difference time domain algorithm and the split-step Fourier method, show that variations of group velocity across the pulse at the epsilon-near-zero point results in a unique “soliton-like” propagation regime without nonlinearity for the propagation lengths of up to 300 nm.

Notes

Acknowledgements

This research was supported by UGP Grant from San Diego State University (242518). Priscilla Kelly gratefully acknowledges the financial support from National Science Foundation (NSF) (Graduate Research Fellowship Program 1321850). The authors acknowledge S. G. Johnson who made MEEP freely available to the community.

References

  1. 1.
    A.F. Koenderink, A. Alù, A. Polman, Science 348, 516 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    N. Liberal, Engheta, Nat. Photonics 11, 149 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    M. Javani, M. Stockman, Phys. Rev. Lett. 117, 107404 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    L. Hau, S.E. Harris, Z. Dutton, C. Behroozi, Nature 397, 594 (1999)ADSCrossRefGoogle Scholar
  5. 5.
    M. Kash, V. Sautenkov, A. Zibrov, L. Hollberg, G. Welch, M. Lukin, Y. Rostovtsev, E. Fry, M. Scully, Phys. Rev. Lett. 82, 5229 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    M. Bigelow, N. Lepeshkin, R. Boyd, Appl. Phys. Lett. 90, 11 (2003)Google Scholar
  7. 7.
    B. Toshihiko, Nat. Photonics 2, 465 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Vlasov, M. O’Boyle, H. Hamann, S. McNab, Nature 438, 65 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    R. Boyd, D. Gauthier, Progr. Opt. 43, 6 (2002)Google Scholar
  10. 10.
    J. Khurgin, Adv. Opt. Photonics 2, 287 (2010)CrossRefGoogle Scholar
  11. 11.
    M.A. Vincenti, D. de Ceglia, M. Scalora, Opt. Lett. 41, 3611 (2016)ADSCrossRefGoogle Scholar
  12. 12.
    Y. Capretti, N. Wang, L. Engheta, Dal Negro, Opt. Lett. 40, 1500 (2015)ADSCrossRefGoogle Scholar
  13. 13.
    M.A. Vincenti, D. de Ceglia, A. Ciattoni, M. Scalora, Phys. Rev. A 84, 063826 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    A. Ciattoni, A. Marini, C. Rizza, M. Scalora, F. Biancalana, Phys. Rev. A 87, 053853 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    A. Rizza, E. Ciattoni, Palange, Phys. Rev. A 83, 053805 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, V.M. Menon, Science 336, 283–205 (2012)CrossRefGoogle Scholar
  17. 17.
    G.V. Naik, J. Liu, A.V. Kildishev, V.M. Shalaev, A. Boltasseva, PNAS 109, 8834 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    P. Kelly, M. Liu, L. Kuznetsova, Appl. Opt. 55, 2993 (2016)ADSCrossRefGoogle Scholar
  19. 19.
    K. Pradhan, R.M. Mundle, K. Santiago, J.R. Skuza, B. Xiao, K.D. Song, M. Bahoura, R. Cheaito, P.E. Hopkins, Sci. Rep. 4, 6415 (2014)ADSCrossRefGoogle Scholar
  20. 20.
    T. Riley, T.A. Kieu, J.S.T. Smalley, H. Si, S.J. Athena Pan, K.W. Kim, A. Post, D.N. Kargar, X. Basov, Y. Pan, D. Fainman, D.J. Wang, Sirbuly, Phys. Status Solidi RRL 8, 948 (2014)CrossRefGoogle Scholar
  21. 21.
    L. Caspani, R.P.M. Kaipurath, M. Clerici, M. Ferrera, T. Roger, J. Kim, N. Kinsey, M. Pietrzyk, A. Di Falco, V.M. Shalaev, A. Boltasseva, D. Faccio, PRL 116, 233901 (2016)ADSCrossRefGoogle Scholar
  22. 22.
    M.Z. Alam, I. De Leon, R.W. Boyd: Science 352, 795 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    N. Kinsey, C. DeVault, J. Kim, M. Ferrera, V.M. Shalaev, A. Boltasseva, Optica 2, 616 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Gebhardt, C. Gaida, S. Hädrich, F. Stutzki, C. Jauregui, J. Limpert, A. Tünnermann, Opt. Lett. 40, 2770 (2015)ADSCrossRefGoogle Scholar
  25. 25.
    T. Sorokina, V.V. Dvoyrin, N. Tolstik, E. Sorokin, IEEE J. Sel. Top. Quantum Electron. 20, 0903412 (2014)CrossRefGoogle Scholar
  26. 26.
    C.Y. Wang, L. Kuznetsova, V.M. Gkortsas, L. Diehl, F.X. Kärtner, M.A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C.Y. Song, S. Haffouz, Z.R. Wasilewski, H.C. Liu, Federico Capasso Opt. Express 17, 12929 (2009)ADSCrossRefGoogle Scholar
  27. 27.
    G. Agrawal, Nonlinear Fiber Optics. 4 edn. (Elsevier, Amsterdam, 2007)zbMATHGoogle Scholar
  28. 28.
    R.W. Boyd, Nonlinear Optics (Academic, San Diego, 2003)Google Scholar
  29. 29.
    L. Kuznetsova, F.W. Wise, Opt. Lett. 32, 2671 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    L. Kuznetsova, A. Chong, F.W. Wise, Opt. Lett. 31, 2640 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    A.S. Rogov, E.E. Narimanov, in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (paper FTh1G.4) (2017)Google Scholar
  32. 32.
    M. Scalora, M.S. Syrchin, N. Akozbek, E.Y. Poliakov, G. D’Aguanno, N. Mattiucci, M.J. Bloemer, A.M. Zheltikov, Phys. Rev. Lett. 95, 013902 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    K.E. Oughstun, H. Xiao, Phys. Rev. Lett. 78, 642 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    P. Kelly, W. Zhang, M. Liu, L. Kuznetsova, Proc. SPIE 10344, 1034400 (2017)Google Scholar
  35. 35.
    C. Bacco, P. Kelly, L. Kuznetsova, J. Nanophotonics 10, 046003 (2016)ADSCrossRefGoogle Scholar
  36. 36.
    N.L. Tsitsas, N. Rompotis, I. Kourakis, P.G. Kevrekidis, D.J. Frantzeskakis, Phys. Rev. E 79, 037601 (2009)ADSCrossRefGoogle Scholar
  37. 37.
    L.D. Landau, E.M. Lifshitz, L.P. Pitaevskii, Course of Theoretical Physics, vol. 8, 2nd edn. (Reed, Oxford, 1984)Google Scholar
  38. 38.
    L.M. Brekhovskikh, Waves in Layered Media, 2nd edn. (Academic, London, 1980)Google Scholar
  39. 39.
    Y. Yoshikawa, S. Adachi, Jpn. J. Appl. Phys. 36, 10 (1997)ADSGoogle Scholar
  40. 40.
    M. Kadi, A. Smaali, R. Outemzbet, Surf. Coating Tech. 211, 45 (2012)CrossRefGoogle Scholar
  41. 41.
    R. Trebino, FROG: The Measurements of Ultrashort Laser Pulses. (Kluwer, Dordrecht, 2000)Google Scholar
  42. 42.
    F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J.D. Joannopoulos, S.G. Johnson, Comput. Phys. Commun. 181, 687 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    K. Liu, J.F. Zhang, W. Xu, Zh..H. Zhu, C.C. Guo, X.J. Li, S.Q. Qin, Sci. Rep. 5, 1 (2015)Google Scholar
  44. 44.
    K.B. Chung, Opt. Express 19, 15705 (2011)ADSCrossRefGoogle Scholar
  45. 45.
    A. Taflove, S.C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd edn. (Artech House, Boston, 2005)Google Scholar
  46. 46.
    H.A. Lorentz, The Theory of Electrons (Dover Publications, New York, 1952)Google Scholar
  47. 47.
    M. Newville, T. Stensitzki, D.B. Allen, M. Rawlik, A. Ingargiola, A. Nelson, Astrophysics Source Code Library (2016). http://cars9.uchicago.edu/software/python/lmfit/lmfit.pdf
  48. 48.
    R. Storn, K. Price, J. Global Optim. 11, 341 (1997)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department and Computational Science Research CenterSan Diego State UniversitySan DiegoUSA

Personalised recommendations