Skip to main content
Log in

Experimental examination of frequency locking effect in acousto-optic system

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

The optoelectronic system containing collinear acousto-optic cell fabricated on the base of calcium molybdate crystal and positive electronic feedback circuit was examined. The feedback signal is formed due to the optical heterodyning effect that occurs on the cell output and takes place in the special regime of collinear acousto-optic diffraction. It was discovered that three operation modes that may exist in this system. The boundaries between the modes were determined. The positions of the boundaries depend on the main parameters of the system—the incident light intensity and the feedback gain value. The new for acousto-optics phenomenon of acousto-optic system self-oscillations frequency locking by the RF generator signal was discovered and examined experimentally. Such an effect has never been observed before in the acousto-optic systems. It was experimentally shown that frequency locking effect may be used to select one of the multimode semiconductor laser longitudinal modes to improve laser radiation spectral composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. J. Xu, R. Stroud, Acousto-Optic Devices. (Wiley, New York, 1992)

    Google Scholar 

  2. A. Korpel, Acousto-Optics. (M. Dekker, Inc, New York, 1996)

    Google Scholar 

  3. A.P. Goutzoulis, D.R. Pape eds. Design and Fabrication of Acousto-Optic Devices (M. Dekker, Inc, New York, 1994)

    Google Scholar 

  4. J. Chrostowski, C. Delisle, Opt. Commun. 41(2), 71 (1982). https://doi.org/10.1016/0030-4018(82)90319-4

    Article  ADS  Google Scholar 

  5. M.R. Chatterjee, E. Sonmez, Proc. SPIE 4514, 41 (2001). https://doi.org/10.1117/12.447617

    Article  ADS  Google Scholar 

  6. V.I. Balakshy, A.V. Kazaryan, V.Ya.. Molchanov, Proc. SPIE 2051, 672 (1993). https://doi.org/10.1117/12.165949

    Article  ADS  Google Scholar 

  7. T.-C. Poon, S.K. Cheung, Appl. Opt. 28(22), 4787 (1989). https://doi.org/10.1364/AO.28.004787

    Article  ADS  Google Scholar 

  8. P. Salzenstein, A.S. Trushin, V.B. Voloshinov, Proc. SPIE 8428, 8428D1 (2012). https://doi.org/10.1117/12.921625

    Article  ADS  Google Scholar 

  9. V.I. Balakshy, A.V. Kazaryan, V.Y. Molchanov, M. Hai, Proc. SPIE 1731, 303 (1992). https://doi.org/10.1117/12.140373

    Article  ADS  Google Scholar 

  10. V.I. Balakshy, A.I. Bychkov, Yu..I. Kuznetsov, S.A. Shabunin, J. Commun. Technol. Electron. 50(9), 1082 (2005)

    Google Scholar 

  11. V.I. Balakshii, A.V. Kazar’yan, A.A. Lee, Quantum Electron. 25(10), 940 (1995). https://doi.org/10.1070/QE1995v025n10ABEH000507

    Article  ADS  Google Scholar 

  12. V.I. Balakshy, A.V. Kazaryan, Opt. Eng. 38(7), 1154 (1999). https://doi.org/10.1117/1.602165

    Article  ADS  Google Scholar 

  13. V.I. Balakshy, I.A. Nagaeva, Quantum Electron. 26(3), 254 (1996). https://doi.org/10.1070/QE1996v026n03ABEH000641

    Article  ADS  Google Scholar 

  14. V.I. Balakshy, I.M. Sinev, J. Opt, A Pure Appl. Opt. 6(4), 469 (2004). https://doi.org/10.1088/1464-4258/6/4/027

    Article  Google Scholar 

  15. V.I. Balakshy, Yu..I. Kuznetsov, S.N. Mantsevich, N.V. Polikarpova, Opt. Laser Technol. 62, 89 (2014). https://doi.org/10.1016/j.optlastec.2013.12.025

    Article  ADS  Google Scholar 

  16. M.R. Chatterjee, M. Al-Saedi, Opt. Eng. 50(5), 055002 (2011). https://doi.org/10.1117/1.3574106

    Article  ADS  Google Scholar 

  17. K.D.A. Saboia, A.C. Ferreira, C.S. Sobrinho, W.B. Fraga, J.W.M. Menezes, M.L. Lyra, A.S.B. Sombra, Opt. Quant. Electron. 41(14–15), 963 (2009). https://doi.org/10.1007/s11082-010-9409-8

    Article  Google Scholar 

  18. J. Chrostrowski, R. Vallee, C. Delisle, Can. J. Phys. 61, 1143–1148 (1983). https://doi.org/10.1139/p83-144

    Google Scholar 

  19. J. Chrostowski, Phys. Rev. A 26(5), 3025 (1982). https://doi.org/10.1103/PhysRevA.26.3023

    Article  ADS  Google Scholar 

  20. J. Chrostrowski, C. Delisle, R. Tremblay, Can. J. Phys. 61(2), 188 (1983). https://doi.org/10.1139/p83-025

    Article  ADS  Google Scholar 

  21. M.R. Chatterjee, J.-J. Huang, Appl. Opt. 31(14), 2506 (1992). https://doi.org/10.1364/AO.31.002506

    Article  ADS  Google Scholar 

  22. A. Cont, T.-C. Poon, Proc. of the 35th Southeastern Symposium on System Theory, 2003. pp. 296–298. https://doi.org/10.1109/SSST.2003.1194577

  23. S.N. Mantsevich, V.I. Balakshy, Yu..I. Kuznetsov, Appl. Phys. B 123, 101 (2017). https://doi.org/10.1007/s00340-017-6689-8

    Article  ADS  Google Scholar 

  24. V.I. Balakshy, Y.I. Kuznetsov, S.N. Mantsevich, Quant. El. 46(2), 181 (2016). https://doi.org/10.1070/QEL15838

    Article  Google Scholar 

  25. S.E. Harris, S.T.K. Nieh, R.S. Feigelson, Appl. Phys. Lett. 17(5), 223 (1970). https://doi.org/10.1063/1.1653374

    Article  ADS  Google Scholar 

  26. V.I. Balakshy, S.N. Mantsevich, Appl. Opt. 48(7), C135 (2009). https://doi.org/10.1364/AO.48.00C135

    Article  Google Scholar 

  27. V.I. Balakshy, S.N. Mantsevich, Opt. Spectr. 106(3), 441 (2009). https://doi.org/10.1134/S0030400X09030217

    Article  ADS  Google Scholar 

  28. V.I. Balakshy, S.N. Mantsevich, Opt. Laser Technol. 44(4), 893 (2012). https://doi.org/10.1016/j.optlastec.2011.11.012

    Article  ADS  Google Scholar 

  29. V.I. Balakshy, S.N. Mantsevich, Opt. Spectr. 103(5), 804 (2007). https://doi.org/10.1134/S0030400X07110203

    Article  ADS  Google Scholar 

  30. V.V. Migulin, V.I. Medvedev, E.R. Mustel, V.N. Parygin, Basic theory of oscillations. (Mir, Moscow, 1983)

    Google Scholar 

  31. L. Gao, S.I. Herriot, K.H. Wagner, IEEE J. Sel. Top. Quantum Electron. 12(2), 315 (2006). https://doi.org/10.1109/JSTQE.2006.872050

    Article  Google Scholar 

  32. A. Foltynowicz, J. Wang, P. Ehlers, O. Axner, Opt. Express 18(18), 18580 (2010). https://doi.org/10.1364/OE.18.018580

    Article  ADS  Google Scholar 

  33. F. Ashtiani, F. Aflatouni, Opt. Express 25(14), 16171 (2017). https://doi.org/10.1364/OE.25.016171

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to all members of the Acousto-Optical Research Center of the National University of Science and Technology “MISIS” and especially to K. B. Yushkov and V. Ya. Molchanov for the assistance in experiments. The work has been supported by the Russian Science Foundation (RSF), project 14-22-00042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Mantsevich.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantsevich, S.N., Balakshy, V.I. Experimental examination of frequency locking effect in acousto-optic system. Appl. Phys. B 124, 54 (2018). https://doi.org/10.1007/s00340-018-6923-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-018-6923-z

Navigation